274
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Computational exploration of natural peptides targeting ACE2

, , , , &
Pages 8018-8029 | Received 06 Jan 2021, Accepted 15 Mar 2021, Published online: 07 Apr 2021

References

  • Aoki, M., Ohtsuka, T., Yamada, M., Ohba, Y., Yoshizaki, H., Yasuno, H., Sano, T., et al. (1991). Cyclothiazomycin, a novel polythiazole-containing peptide with renin inhibitory activity. Taxonomy, fermentation, isolation and physico-chemical characterization. Journal of Antibiotics, 44, 582–588. https://doi.org/10.7164/antibiotics.44.582
  • Barros, R. O., Junior, F., Pereira, W. S., Oliveira, N. M. N., & Ramos, R. M. (2020). Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. Journal of Proteome Research, 19(11), 4567-4575. https://doi.org/10.1021/acs.jproteome.0c00327
  • Baumann, S., Schoof, S., Bolten, M., Haering, C., Takagi, M., Shin-Ya, K., & Arndt, H. D. (2010). Molecular determinants of microbial resistance to thiopeptide antibiotics. Journal of the American Chemical Society, 132(20), 6973–6981. https://doi.org/10.1021/ja909317n
  • Baumeister, J., Chatain, N., Hubrich, A., Maie, T., Costa, I. G., Denecke, B., Han, L., Kustermann, C., Sontag, S., Sere, K., Strathmann, K., Zenke, M., Schuppert, A., Brummendorf, T. H., Kranc, K. R., Koschmieder, S., & Gezer, D. (2020). Hypoxia-inducible factor 1 (HIF-1) is a new therapeutic target in JAK2V617F-positive myeloproliferative neoplasms. Leukemia, 34(4), 1062–1074. https://doi.org/10.1038/s41375-019-0629-z
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bitzer, J., Gesheva, V., & Zeeck, A. (2006). Actinomycins with altered threonine units in the beta-peptidolactone. Journal of Natural Products, 69(8), 1153–1157. https://doi.org/10.1021/np060063g
  • Blaskovich, M. A. T., Hansford, K. A., Butler, M. S., Jia, Z., Mark, A. E., & Cooper, M. A. (2018). Developments in glycopeptide antibiotics. ACS Infectious Diseases, 4(5), 715–735. https://doi.org/10.1021/acsinfecdis.7b00258
  • Cai, W., Wang, X., Elshahawi, S. I., Ponomareva, L. V., Liu, X., McErlean, M. R., Cui, Z., Arlinghaus, A. L., Thorson, J. S., & Van Lanen, S. G. (2016). Antibacterial and cytotoxic actinomycins Y6-Y9 and Zp from Streptomyces sp. strain Gö-GS12. Journal of Natural Products, 79(10), 2731–2739. https://doi.org/10.1021/acs.jnatprod.6b00742
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Chen, H., & Patel, D. J. (1995). Solution structure of a quinomycin bisintercalator-DNA complex. Journal of Molecular Biology, 246(1), 164–179. https://doi.org/10.1006/jmbi.1994.0074
  • Chen, W., Yuan, P., Yang, M., Yan, Z., Kong, S., Yan, J., Liu, X., Chen, Y., Qiao, J., & Yan, L. (2020). SARS-CoV-2 entry factors: ACE2 and TMPRSS2 are expressed in peri-implantation embryos and the maternal-fetal interface. Engineering (Beijing, China)), 6(10), 1162–1169. https://doi.org/10.1016/j.eng.2020.07.013
  • Crawford, J. M., Portmann, C., Kontnik, R., Walsh, C. T., & Clardy, J. (2011). NRPS substrate promiscuity diversifies the xenematides. Organic Letters, 13(19), 5144–5147. https://doi.org/10.1021/ol2020237
  • Culp, E. J., Waglechner, N., Wang, W., Fiebig-Comyn, A. A., Hsu, Y. P., Koteva, K., Sychantha, D., Coombes, B. K., Van Nieuwenhze, M. S., Brun, Y. V., & Wright, G. D. (2020). Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature, 578(7796), 582–587. https://doi.org/10.1038/s41586-020-1990-9
  • D.A. Case, K. B., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., et al. (2018). Amber 18. University of California.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davis, W. R., Gabbara, S., Hupe, D., & Peliska, J. A. (1998). Actinomycin D inhibition of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase and nucleocapsid protein. Biochemistry, 37(40), 14213–14221. https://doi.org/10.1021/bi9814890
  • Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 34(7), 8787–8795. https://doi.org/10.1096/fj.202001115R
  • Del Amo, J., Polo, R., Moreno, S., Diaz, A., Martinez, E., Arribas, J. R., Jarrin, I., & Hernan, M. A. (2020). Incidence and severity of COVID-19 in HIV-positive persons receiving antiretroviral therapy: A cohort study. Annals of Internal Medicine, 173(7), 536-541.
  • Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., Castagna, A., Feldt, T., Green, G., Green, M. L., Lescure, F.-X., Nicastri, E., Oda, R., Yo, K., Quiros-Roldan, E., Studemeister, A., Redinski, J., Ahmed, S., Bernett, J., Chelliah, D., … Flanigan, T. (2020). Compassionate use of remdesivir for patients with severe Covid-19. The New England Journal of Medicine, 382(24), 2327–2336. https://doi.org/10.1056/NEJMoa2007016
  • Grundmann, F., Kaiser, M., Schiell, M., Batzer, A., Kurz, M., Thanwisai, A., Chantratita, N., & Bode, H. B. (2014). Antiparasitic chaiyaphumines from entomopathogenic Xenorhabdus sp. PB61.4. Journal of Natural Products, 77(4), 779–783. https://doi.org/10.1021/np4007525
  • Han, Y., & Kral, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • Huang, X., Pearce, R., & Zhang, Y. (2020). De novo design of protein peptides to block association of the SARSCoV-2 spike protein with human ACE2. Aging, 12(12), 11263-11276. https://doi.org/10.18632/aging.103416
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hung, K. Y., Harris, P. W., Heapy, A. M., & Brimble, M. A. (2011). Synthesis and assignment of stereochemistry of the antibacterial cyclic peptide xenematide. Organic & Biomolecular Chemistry, 9(1), 236–242. https://doi.org/10.1039/c0ob00315h
  • Iacobazzi, R. M., Annese, C., Azzariti, A., D'Accolti, L., Franco, M., Fusco, C., La Piana, G., Laquintana, V., & Denora, N. (2013). Antitumor potential of conjugable Valinomycins bearing hydroxyl sites: In vitro studies. ACS Medicinal Chemistry Letters, 4(12), 1189–1192. https://doi.org/10.1021/ml400300q
  • Jaitzig, J., Li, J., Sussmuth, R. D., & Neubauer, P. (2014). Reconstituted biosynthesis of the nonribosomal macrolactone antibiotic Valinomycin in Escherichia coli. ACS Synthetic Biology, 3(7), 432–438. https://doi.org/10.1021/sb400082j
  • Jayasuriya, H., Salituro, G. M., Smith, S. K., Heck, J. V., Gould, S. J., Singh, S. B., Homnick, C. F., Holloway, M. K., Pitzenberger, S. M., & Patane, M. A. (1998). Complestatin to chloropeptin I via a quantitative acid catalyzed rearrangement. Absolute stereochemical determination of Complestatin. Tetrahedron Letters, 39(16), 2247–2248. https://doi.org/10.1016/S0040-4039(98)00270-6
  • Jeyanathan, M., Afkhami, S., Smaill, F., Miller, M. S., Lichty, B. D., & Xing, Z. (2020). Immunological considerations for COVID-19 vaccine strategies. Nature Reviews Immunology, 20(10), 615–632. https://doi.org/10.1038/s41577-020-00434-6
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Just-Baringo, X., Albericio, F., & Alvarez, M. (2014). Thiopeptide antibiotics: Retrospective and recent advances. Marine Drugs, 12(1), 317–351. https://doi.org/10.3390/md12010317
  • Kalhor, H., Sadeghi, S., Abolhasani, H., Kalhor, R., & Rahimi, H. (2020). Repurposing of the approved small molecule drugs in order to inhibit SARS-CoV-2 S protein and human ACE2 interaction through virtual screening approaches. Journal of Biomolecular Structure and Dynamics, 24, 1–16. https://doi.org/10.1080/07391102.2020.1824816
  • Kanoh, K., Kamino, K., Leleo, G., Adachi, K., & Shizuri, Y. (2003). Pseudoalterobactin A and B, new siderophores excreted by marine bacterium Pseudoalteromonas sp. KP20-4. The Journal of Antibiotics, 56(10), 871–875. https://doi.org/10.7164/antibiotics.56.871
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., et al. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827. https://doi.org/10.1016/j.cell.2020.06.043
  • Kuba, K., Imai, Y., Ohto-Nakanishi, T., & Penninger, J. M. (2010). Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology & Therapeutics, 128(1), 119–128. https://doi.org/10.1016/j.pharmthera.2010.06.003
  • Kuttruff, C. A., Zipse, H., & Trauner, D. (2011). Concise total syntheses of variecolortides A and B through an unusual hetero-Diels-Alder reaction. Angewandte Chemie (International ed. in English), 50(6), 1402–1405. https://doi.org/10.1002/anie.201006154
  • Lackner, H., Bahner, I., Shigematsu, N., Pannell, L. K., & Mauger, A. B. (2000). Structures of five components of the actinomycin Z complex from Streptomyces fradiae, two of which contain 4-chlorothreonine. Journal of Natural Products, 63(3), 352–356. https://doi.org/10.1021/np990416u
  • Laing, A. G., Lorenc, A., Del Molino Del Barrio, I., Das, A., Fish, M., Monin, L., Munoz-Ruiz, M., McKenzie, D. R., Hayday, T. S., Francos-Quijorna, I., Kamdar, S., Joseph, M., Davies, D., Davis, R., Jennings, A., Zlatareva, I., Vantourout, P., Wu, Y., Sofra, V., … Hayday, A. C. (2020). A dynamic COVID-19 immune signature includes associations with poor prognosis. Nature Medicine, 26(12), 1951–1951. https://doi.org/10.1038/s41591-020-1079-x
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Luan, J., Lu, Y., Jin, X., & Zhang, L. (2020). Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochemical and Biophysical Research Communications, 526(1), 165–169. https://doi.org/10.1016/j.bbrc.2020.03.047
  • Mahanta, N., Zhang, Z., Hudson, G. A., van der Donk, W. A., & Mitchell, D. A. (2017). Reconstitution and Substrate Specificity of the Radical S-Adenosyl-methionine Thiazole C-Methyltransferase in Thiomuracin Biosynthesis. Journal of the American Chemical Society, 139(12), 4310–4313. https://doi.org/10.1021/jacs.7b00693
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Margolin, E., Burgers, W. A., Sturrock, E. D., Mendelson, M., Chapman, R., Douglass, N., Williamson, A. L., & Rybicki, E. P. (2020). Prospects for SARS-CoV-2 diagnostics, therapeutics and vaccines in Africa. Nature Reviews Microbiology, 18, 690–704. https://doi.org/10.1038/s41579-020-00441-3
  • Meo, S. A., Klonoff, D. C., & Akram, J. (2020). Efficacy of chloroquine and hydroxychloroquine in the treatment of COVID-19. European Review for Medical and Pharmacological Sciences, 24(8), 4539–4547. https://doi.org/10.26355/eurrev_202004_21038
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Morris, R. P., Leeds, J. A., Naegeli, H. U., Oberer, L., Memmert, K., Weber, E., LaMarche, M. J., Parker, C. N., Burrer, N., Esterow, S., Hein, A. E., Schmitt, E. K., & Krastel, P. (2009). Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. Journal of the American Chemical Society, 131(16), 5946–5955. https://doi.org/10.1021/ja900488a
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Roe, D. R., & Cheatham, T. E. 3rd (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Runfeng, L., Yunlong, H., Jicheng, H., Weiqi, P., Qinhai, M., Yongxia, S., Chufang, L., Jin, Z., Zhenhua, J., Haiming, J., Kui, Z., Shuxiang, H., Jun, D., Xiaobo, L., Xiaotao, H., Lin, W., Nanshan, Z., & Zifeng, Y. (2020). Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacological Research, 156, 104761. https://doi.org/10.1016/j.phrs.2020.104761
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of a system with constraints: of the Cartesian equations of motion molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Schröder, I. (2020). COVID-19: A risk assessment perspective. ACS Chemical Health & Safety, 27(3), 160–169. https://doi.org/10.1021/acs.chas.0c00035
  • Seephonkai, P., Kongsaeree, P., Prabpai, S., Isaka, M., & Thebtaranonth, Y. (2006). Transformation of an irregularly bridged epidithiodiketopiperazine to trichodermamide A. Organic Letters, 8(14), 3073–3075. https://doi.org/10.1021/ol061046l
  • Shan, T., Jiang, W., Liu, X., Wang, C., Gao, S., Yan, P., Sun, B., & Miao, L. (2020). Alkaloids including two rare variecolortides from the fungus Aspergillus ruber. Tetrahedron, 76(24), 131258. https://doi.org/10.1016/j.tet.2020.131258
  • Siboni, R. B., Nakamori, M., Wagner, S. D., Struck, A. J., Coonrod, L. A., Harriott, S. A., Cass, D. M., Tanner, M. K., & Berglund, J. A. (2015). Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Reports, 13(11), 2386–2394. https://doi.org/10.1016/j.celrep.2015.11.028
  • Siedlecki, C. T., Kass, P. H., Jakubiak, M. J., Dank, G., Lyons, J., & Kent, M. S. (2006). Evaluation of an actinomycin-D-containing combination chemotherapy protocol with extended maintenance therapy for canine lymphoma. The Canadian Veterinary Journal = La Revue Veterinaire Canadienne, 47(1), 52–59.
  • Silvano, E., Silvana, N., & Pagliano, P. (2020). Update on treatment of COVID-19: Ongoing studies between promising and disappointing results. Le Infezioni in Medicina, 28(2), 198–211.
  • Singh, S. B., Jayasuriya, H., Salituro, G. M., Zink, D. L., Shafiee, A., Heimbuch, B., Silverman, K. C., Lingham, R. B., Genilloud, O., Teran, A., Vilella, D., Felock, P., & Hazuda, D. (2001). The Complestatins as HIV-1 integrase inhibitors. Efficient isolation, structure elucidation, and inhibitory activities of isoComplestatin, chloropeptin I, new Complestatins, A and B, and acid-hydrolysis products of chloropeptin I. Journal of Natural Products, 64(7), 874–882. https://doi.org/10.1021/np000632z
  • Smith, M. D., & Smith, J. C. (2020). Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRxiv. Preprint. https://doi.org/10.26434/chemrxiv.11871402.v4
  • Sorokina, M., M C Teixeira, J., Barrera-Vilarmau, S., Paschke, R., Papasotiriou, I., Rodrigues, J. P. G. L. M., & Kastritis, P. L. (2020). Structural models of human ACE2 variants with SARS-CoV-2 Spike protein for structure-based drug design. Scientific Data, 7(1), 309. https://doi.org/10.1038/s41597-020-00652-6
  • Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N. A., Patane, M. A., & Pantoliano, M. W. (2004). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry, 279(17), 17996–18007. https://doi.org/10.1074/jbc.M311191200
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tzaridis, T., Milde, T., Pajtler, K. W., Bender, S., Jones, D. T., Muller, S., Wittmann, A., Schlotter, M., Kulozik, A. E., Lichter, P., Peter Collins, V., Witt, O., Kool, M., Korshunov, A., Pfister, S. M., & Witt, H. (2016). Low-dose Actinomycin-D treatment re-establishes the tumoursuppressive function of P53 in RELA-positive ependymoma. Oncotarget, 7(38), 61860–61873. https://doi.org/10.18632/oncotarget.11452
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, W. L., Zhu, T. J., Tao, H. W., Lu, Z. Y., Fang, Y. C., Gu, Q. Q., & Zhu, W. M. (2007). Three novel, structurally unique spirocyclic alkaloids from the halotolerant B-17 fungal strain of Aspergillus variecolor. Chemistry & Biodiversity, 4(12), 2913–2919. https://doi.org/10.1002/cbdv.200790240
  • Wang, X., Lin, M., Xu, D., Lai, D., & Zhou, L. (2017). Structural diversity and biological activities of the cyclodipeptides from fungi. Molecules, 22(12), 2069. https://doi.org/10.3390/molecules22122069
  • Watanabe, K., Hotta, K., Praseuth, A. P., Koketsu, K., Migita, A., Boddy, C. N., Wang, C. C., Oguri, H., & Oikawa, H. (2006). Total biosynthesis of antitumor nonribosomal peptides in Escherichia coli. Nature Chemical Biology, 2(8), 423–428. https://doi.org/10.1038/nchembio803
  • Wilson, B. R., Bogdan, A. R., Miyazawa, M., Hashimoto, K., & Tsuji, Y. (2016). Siderophores in iron metabolism: From mechanism to therapy potential. Trends in Molecular Medicine, 22(12), 1077–1090. https://doi.org/10.1016/j.molmed.2016.10.005
  • Wu, P. C., Tzeng, S. L., Chang, C. K., Kao, Y. F., Waring, M. J., & Hou, M. H. (2018). Cooperative recognition of T: T mismatch by echinomycin causes structural distortions in DNA duplex. Nucleic Acids Research, 46(14), 7396–7404. https://doi.org/10.1093/nar/gky345
  • Xu, Y., McSally, J., Andricioaei, I., & Al-Hashimi, H. M. (2018). Modulation of Hoogsteen dynamics on DNA recognition. Nature Communications, 9(1), 1473. https://doi.org/10.1038/s41467-018-03516-1
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yang, C. W., Peng, T. T., Hsu, H. Y., Lee, Y. Z., Wu, S. H., Lin, W. H., Ke, Y. Y., Hsu, T. A., Yeh, T. K., Huang, W. Z., Lin, J. H., Sytwu, H. K., Chen, C. T., & Lee, S. J. (2020). Repurposing old drugs as antiviral agents for coronaviruses. Biomedical Journal, 43(4), 368-374. https://doi.org/10.1016/j.bj.2020.05.003
  • Ye, X. T., Luo, Y. L., Xia, S. C., Sun, Q. F., Ding, J. G., Zhou, Y., Chen, W., Wang, X. F., Zhang, W. W., Du, W. J., Ruan, Z. W., & Hong, L. (2020). Clinical efficacy of lopinavir/ritonavir in the treatment of Coronavirus disease 2019. European Review for Medical and Pharmacological Sciences, 24(6), 3390–3396. https://doi.org/10.26355/eurrev_202003_20706
  • Yun, B. S., Fujita, K., Furihata, K., & Seto, H. (2001). Absolute stereochemistry and solution conformation of promothiocins. Tetrahedron, 57(48), 9683–9687. https://doi.org/10.1016/S0040-4020(01)00979-6
  • Zhang, D., Ma, Z., Chen, H., Lu, Y., & Chen, X. (2020). Valinomycin as a potential antiviral agent against coronaviruses: A review. Biomedical Journal, 43(5), 414–423. https://doi.org/10.1016/j.bj.2020.08.006
  • Zhang, G., Pomplun, S., Loftis, A. R., Tan, X., Loas, A., & Pentelute, B. L. (2020). The first-in-class peptide binder to the SARS-CoV-2 spike protein.
  • Zhao, J., Yuan, Q., Wang, H., Liu, W., Liao, X., Su, Y., Wang, X., Yuan, J., Li, T., Li, J., Qian, S., Hong, C., Wang, F., Liu, Y., Wang, Z., He, Q., Li, Z., He, B., Zhang, T., … Zhang, Z. (2020). Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clinical Infectious Diseases, 71(16), 2027–2034.
  • Zhuang, L., Huang, S., Liu, W. Q., Karim, A. S., Jewett, M. C., & Li, J. (2020). Total in vitro biosynthesis of the nonribosomal macrolactone peptide Valinomycin. Metabolic Engineering, 60, 37–44. https://doi.org/10.1016/j.ymben.2020.03.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.