217
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Caryocar coriaceum Wittm. fruit extracts as Leishmania inhibitors: in-vitro and in-silico approaches

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , , , ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8040-8055 | Received 26 Jan 2021, Accepted 15 Mar 2021, Published online: 26 Mar 2021

References

  • Almeida-Neto, F. W. Q., da Silva, L. P., Ferreira, M. K. A., Mendes, F. R. S., de Castro, K. K. A., Bandeira, P. N., de Menezes, J. E. S. A., dos Santos, H. S., Monteiro, N. K. V., Marinho, E. S., & de Lima-Neto, P. (2020). Characterization of the structural, spectroscopic, nonlinear optical, electronic properties and antioxidant activity of the N-{4’-[(E)-3-(Fluorophenyl)-1-(phenyl)-prop-2-en-1-one]}-acetamide. Journal of Molecular Structure, 1220, 128765. https://doi.org/10.1016/j.molstruc.2020.128765
  • Alvar, J., Croft, S., & Olliaro, P. (2006). Chemotherapy in the treatment and control of leishmaniasis. Advances in Parasitology, 61, 223–274. https://doi.org/10.1016/S0065-308X(05)61006-8
  • Alves, D. R., Maia de Morais, S., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Vasconcelos, F. R., Silva, I. N. G., da, Araujo de Sousa, H., Assolini, J. P., Conchon-Costa, I., Pavanelli, W. R., Freire, F. d C. O., Pavanelli, W. R., & Freire, F. d. C. O. (2017). Flavonoid composition and biological activities of ethanol extracts of Caryocar coriaceum Wittm., a native plant from Caatinga biome. Evidence-Based Complementary and Alternative Medicine: eCAM, 2017, 6834218–6834217. https://doi.org/10.1155/2017/6834218
  • Atkins, P., Jones, L., & Laverman, L. (2018). Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente (7th ed.). Bookman Editora.
  • Baiocco, P., Colotti, G., Franceschini, S., & Ilari, A. (2009). Molecular basis of antimony treatment in leishmaniasis. Journal of Medicinal Chemistry, 52(8), 2603–2612. https://doi.org/10.1021/jm900185q
  • Baptista, A., Gonçalves, R. V., Bressan, J., & Pelúzio, M. d. C. G. (2018). Antioxidant and antimicrobial activities of crude extracts and fractions of cashew (Anacardium occidentale L.), cajui (Anacardium microcarpum), and pequi (Caryocar brasiliense C.): A systematic review. Oxidative Medicine and Cellular Longevity, 2018, 3753562–3753513. https://doi.org/10.1155/2018/3753562
  • Biovia, D. S., Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Richmond, T. J. (2000). Dassault Systèmes BIOVIA, discovery studio visualizer. The Journal of Chemical Physics, 17(2).
  • Bortoleti, B. T. d. S., Gonçalves, M. D., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Assolini, J. P., Carloto, A. C. M., de Carvalho, P. G. C., Cardoso, I. L. A., Simão, A. N. C., Arakawa, N. S., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2018). Grandiflorenic acid promotes death of promastigotes via apoptosis-like mechanism and affects amastigotes by increasing total iron bound capacity. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 46, 11–20. https://doi.org/10.1016/j.phymed.2018.06.010
  • Cataneo, A. H. D., Tomiotto-Pellissier, F., Miranda-Sapla, M. M., Assolini, J. P., Panis, C., Kian, D., Yamauchi, L. M., Colado Simão, A. N., Casagrande, R., Pinge-Filho, P., Costa, I. N., Verri, W. A., Conchon-Costa, I., & Pavanelli, W. R. (2019). Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 113, 108745. https://doi.org/10.1016/j.biopha.2019.108745
  • Colombo, N. B. R., Rangel, M. P., Martins, V., Hage, M., Gelain, D. P., Barbeiro, D. F., Grisolia, C. K., Parra, E. R., & Capelozzi, V. L. (2015). Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis. Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas medicas e biologicas, 48(9), 852–862. https://doi.org/10.1590/1414-431X20154467
  • Csizmadia, P. (2019). MarvinSketch and MarvinView: Molecule Applets for the World Wide Web. 1775. https://doi.org/10.3390/ecsoc-3-01775
  • Das, N. K., Biswas, S., Solanki, S., & Mukhopadhyay, C. K. (2009). Leishmania donovani depletes labile iron pool to exploit iron uptake capacity of macrophage for its intracellular growth. Cellular Microbiology, 11(1), 83–94. https://doi.org/10.1111/j.1462-5822.2008.01241.x
  • de Figueiredo, P. R. L., Oliveira, I. B., Neto, J. B. S., de Oliveira, J. A., Ribeiro, L. B., de Barros Viana, G. S., Rocha, T. M., Leal, L. K. A. M., Kerntopf, M. R., Felipe, C. F. B., Coutinho, H. D. M., & de Alencar Menezes, I. R. (2016). Caryocar coriaceum Wittm. (Pequi) fixed oil presents hypolipemic and anti-inflammatory effects in vivo and in vitro. Journal of Ethnopharmacology, 191, 87–94. https://doi.org/10.1016/j.jep.2016.06.038
  • Doroodgar, M., Delavari, M., Doroodgar, M., Abbasi, A., Taherian, A. A., & Doroodgar, A. (2016). Tamoxifen induces apoptosis of leishmania major promastigotes in vitro. The Korean Journal of Parasitology, 54(1), 9–14. https://doi.org/10.3347/kjp.2016.54.1.9
  • Fidalgo, L. M., & Gille, L. (2011). Mitochondria and trypanosomatids: Targets and drugs. Pharmaceutical Research, 28(11), 2758–2770. https://doi.org/10.1007/s11095-011-0586-3
  • Garai, Á., Zeke, A., Gógl, G., Törő, I., Fördős, F., Blankenburg, H., Bárkai, T., Varga, J., Alexa, A., Emig, D., Albrecht, M., & Reményi, A. (2012). Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Science Signaling, 5(245), ra74. https://doi.org/10.1126/scisignal.2003004
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011a). Fast docking using the CHARMM force field with EADock DSS. Journal of Computational Chemistry, 32(10), 2149–2159. https://doi.org/10.1002/jcc.21797
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011b). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research., 39, 270–277. https://doi.org/10.1093/nar/gkr366
  • Jiménez-Ruiz, A., Alzate, J., MacLeod, E., Lüder, C. G., Fasel, N., & Hurd, H. (2010). Apoptotic markers in protozoan parasites. Parasites & Vectors, 3(1), 104.https://doi.org/10.1186/1756-3305-3-104
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kasai, S., Mimura, J., Ozaki, T., & Itoh, K. (2018). Emerging regulatory role of Nrf2 in iron, heme, and hemoglobin metabolism in physiology and disease. Frontiers in Veterinary Science, 5, 242. https://doi.org/10.3389/fvets.2018.00242
  • Kaurinovic, B., & Vastag, D. (2019). Flavonoids and phenolic acids as potential natural antioxidants. In Emad Shalaby (Ed.), Antioxidants (pp. 1-20). IntechOpen. https://doi.org/10.5772/intechopen.83731
  • Kerins, M. J., & Ooi, A. (2018). The roles of NRF2 in modulating cellular iron homeostasis. Antioxidants & Redox Signaling, 29(17), 1756–1773. https://doi.org/10.1089/ars.2017.7176
  • Kima, P. E. (2007). The amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection and persist. International Journal for Parasitology, 37(10), 1087–1096. https://doi.org/10.1016/j.ijpara.2007.04.007
  • Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A., & Dulak, J. (2016). Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cellular and Molecular Life Sciences: CMLS, 73(17), 3221–3247. https://doi.org/10.1007/s00018-016-2223-0
  • Marinho, M. M., Castro, R. R., & Marinho, E. S. (2016). Utilização do método semi-empírico PM7 para caracterização do fármaco atalureno: HOMO, LUMO, MESP. Revista Expressão Católica Saúde, 1(1), 177–184. https://doi.org/10.25191/recs.v1i1.1393
  • Melo Lucio, F. N., Da Silva, J. E., Marinho, E. M., Da Silva Mendes, F. R., Marinho, M. M., & Marinho, E. S. (2020). Methylcytisine alcaloid potentially active against dengue virus: A molecular docking study and electronic structural characterization. International Journal of Research -GRANTHAALAYAH, 8(1), 221–236. https://doi.org/10.29121/granthaalayah.v8.i1.2020.270
  • Miranda-Sapla, M. M., Tomiotto-Pellissier, F., Assolini, J. P., Carloto, A. C. M., Bortoleti, B. T., da, S., Gonçalves, M. D., Tavares, E. R., Rodrigues, J. H., da, S., Simão, A. N. C., Yamauchi, L. M., Nakamura, C. V., Verri, W. A., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2019). Trans-chalcone modulates Leishmania amazonensis infection in vitro by Nrf2 overexpression affecting iron availability. European Journal of Pharmacology, 853, 275–288. https://doi.org/10.1016/j.ejphar.2019.03.049
  • Mittal, N., Muthuswami, R., & Madhubala, R. (2017). The mitochondrial SIR2 related protein 2 (SIR2RP2) impacts Leishmania donovani growth and infectivity. PLoS Neglected Tropical Diseases, 11(5), e0005590. https://doi.org/10.1371/journal.pntd.0005590
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Nelson, D. L., & Cox, M. M. (2018). Princípios de Bioquímica de Lehninger (7th ed.). Artmed.
  • Nieto-Meneses, R., Castillo, R., Hernández-Campos, A., Maldonado-Rangel, A., Matius-Ruiz, J. B., Trejo-Soto, P. J., Nogueda-Torres, B., Dea-Ayuela, M. A., Bolás-Fernández, F., Méndez-Cuesta, C., & Yépez-Mulia, L. (2018). In vitro activity of new N-benzyl-1H-benzimidazol-2-amine derivatives against cutaneous, mucocutaneous and visceral Leishmania species. Experimental Parasitology, 184, 82–89. https://doi.org/10.1016/j.exppara.2017.11.009
  • Odonne, G., Houël, E., Bourdy, G., & Stien, D. (2017). Treating leishmaniasis in Amazonia: A review of ethnomedicinal concepts and pharmaco-chemical analysis of traditional treatments to inspire modern phytotherapies. Journal of Ethnopharmacology, 199, 211–230. https://doi.org/10.1016/j.jep.2017.01.048
  • Ozbilge, H., Aksoy, N., Kilic, E., Saraymen, R., Yazar, S., & Vural, H. (2005). Evaluation of oxidative stress in cutaneous leishmaniasis. The Journal of Dermatology, 32(1), 7–11. https://doi.org/10.1111/j.1346-8138.2005.tb00705.x
  • Palmeira, S. M., Silva, P. R. P., Ferrão, J. S. P., Ladd, A. A. B. L., Dagli, M. L. Z., Grisolia, C. K., & Hernandez-Blazquez, F. J. (2016). Chemopreventive effects of pequi oil (Caryocar brasiliense Camb.) on preneoplastic lesions in a mouse model of hepatocarcinogenesis. European Journal of Cancer Prevention: The Official Journal of the European Cancer Prevention Organisation (ECP), 25(4), 299–305. https://doi.org/10.1097/CEJ.0000000000000187
  • Pandey, R. K., Kumbhar, B. V., Sundar, S., Kunwar, A., & Prajapati, V. K. (2017). Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. Journal of Receptor and Signal Transduction Research, 37(1), 60–70. https://doi.org/10.3109/10799893.2016.1171344
  • Paula-Ju, W. d., Rocha, F. H., Donatti, L., Fadel-Picheth, C. M. T., & Weffort-Santos, A. M. (2006). Leishmanicidal, antibacterial, and antioxidant activities of Caryocar brasiliense Cambess leaves hydroethanolic extract. Revista Brasileira de Farmacognosia, 16, 625–630. https://doi.org/10.1590/S0102-695X2006000500007
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Purkait, B., Singh, R., Wasnik, K., Das, S., Kumar, A., Paine, M., Dikhit, M., Singh, D., Sardar, A. H., Ghosh, A. K., & Das, P. (2015). Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani. The Journal of Antimicrobial Chemotherapy, 70(5), 1343–1356. https://doi.org/10.1093/jac/dku534
  • Raj, S., Saha, G., Sasidharan, S., Dubey, V. K., & Saudagar, P. (2019). Biochemical characterization and chemical validation of Leishmania MAP Kinase-3 as a potential drug target. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-52774-6
  • Ronin, C., Costa, D. M., Tavares, J., Faria, J., Ciesielski, F., Ciapetti, P., Smith, T. K., MacDougall, J., Cordeiro-da-Silva, A., & Pemberton, I. K. (2018). The crystal structure of the Leishmania infantum silent information regulator 2 related protein 1: Implications to protein function and drug design. PLoS One, 13(3), e0193602. https://doi.org/10.1371/journal.pone.0193602
  • Rossi, M., & Fasel, N. (2018). How to master the host immune system? Leishmania parasites have the solutions!. International Immunology, 30(3), 103–111. https://doi.org/10.1093/intimm/dxx075
  • Shokri, A., Abastabar, M., Keighobadi, M., Emami, S., Fakhar, M., Teshnizi, S. H., Makimura, K., Rezaei-Matehkolaei, A., & Mirzaei, H. (2018). Promising antileishmanial activity of novel imidazole antifungal drug luliconazole against Leishmania major: In vitro and in silico studies. Journal of Global Antimicrobial Resistance, 14, 260–265. https://doi.org/10.1016/j.jgar.2018.05.007
  • Soares-Silva, M., Diniz, F. F., Gomes, G. N., & Bahia, D. (2016). The mitogen-activated protein kinase (MAPK) pathway: Role in immune evasion by trypanosomatids. Frontiers in Microbiology, 7, 183. https://doi.org/10.3389/fmicb.2016.00183
  • Stewart, J. J. P. (2013). Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, 19(1), 1–32. https://doi.org/10.1007/s00894-012-1667-x
  • Tomiotto-Pellissier, F., Alves, D. R., Miranda-Sapla, M. M., de Morais, S. M., Assolini, J. P., da Silva Bortoleti, B. T., Gonçalves, M. D., Cataneo, A. H. D., Kian, D., Madeira, T. B., Yamauchi, L. M., Nixdorf, S. L., Costa, I. N., Conchon-Costa, I., & Pavanelli, W. R. (2018). Caryocar coriaceum extracts exert leishmanicidal effect acting in promastigote forms by apoptosis-like mechanism and intracellular amastigotes by Nrf2/HO-1/ferritin dependent response and iron depletion: Leishmanicidal effect of Caryocar coriaceum leaf exracts. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 98, 662–672. https://doi.org/10.1016/j.biopha.2017.12.083
  • Turcano, L., Torrente, E., Missineo, A., Andreini, M., Gramiccia, M., Di Muccio, T., Genovese, I., Fiorillo, A., Harper, S., Bresciani, A., Colotti, G., & Ilari, A. (2018). Identification and binding mode of a novel Leishmania trypanothione reductase inhibitor from high throughput screening. PLoS Neglected Tropical Diseases, 12(11), e0006969. https://doi.org/10.1371/journal.pntd.0006969
  • Vergnes, B., Sereno, D., Tavares, J., Cordeiro-Da-Silva, A., Vanhille, L., Madjidian-Sereno, N., Depoix, D., Monte-Alegre, A., & Ouaissi, A. (2005). Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene, 363(1–2), 85–96. https://doi.org/10.1016/j.gene.2005.06.047
  • Vivarini, Á. D. C., Calegari-Silva, T. C., Saliba, A. M., Boaventura, V. S., França-Costa, J., Khouri, R., Dierckx, T., Dias-Teixeira, K. L., Fasel, N., Barral, A. M. P., Borges, V. M., Van Weyenbergh, J., & Lopes, U. G. (2017). Systems approach reveals nuclear factor erythroid 2-related factor 2/protein kinase R crosstalk in human cutaneous leishmaniasis. Frontiers in Immunology, 8, 1127. https://doi.org/10.3389/fimmu.2017.01127
  • WHO. (2018). World Health Organization - Leishmaniasis. WHO. https://www.who.int/leishmaniasis/en/
  • Zaidi, A., Singh, K. P., & Ali, V. (2017). Leishmania and its quest for iron: An update and overview. Molecular and Biochemical Parasitology, 211, 15–25. https://doi.org/10.1016/j.molbiopara.2016.12.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.