530
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Repurposing of approved drug molecules for viral infectious diseases: a molecular modelling approach

ORCID Icon, & ORCID Icon
Pages 8056-8072 | Received 11 Nov 2020, Accepted 15 Mar 2021, Published online: 02 Apr 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Almeida, R. N., Racine, T., Magalhães, K. G., & Kobinger, G. P. (2018). Zika Virus Vaccines: Challenges and Perspectives. Vaccines, 6(3), 62. https://doi.org/10.3390/vaccines6030062
  • Anzali, S., Barnickel, G., Cezanne, B., Krug, M., Filimonov, D., & Poroikov, V. (2001). Discriminating between drugs and nondrugs by prediction of activity spectra for substances (PASS). Journal of Medicinal Chemistry, 44(15), 2432–2437. https://doi.org/10.1021/jm0010670
  • Arankalle, V. A., Shrivastava, S., Cherian, S., Gunjikar, R. S., Walimbe, A. M., Jadhav, S. M., Sudeep, A., & Mishra, A. C. (2007). Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. The Journal of General Virology, 88(Pt 7), 1967–1976. https://doi.org/10.1099/vir.0.82714-0
  • Badrinarayan, P., & Sastry, G. N. (2011). Virtual high throughput screening in new lead identification. Combinatorial Chemistry & High Throughput Screening, 14(10), 840–860. https://doi.org/10.2174/138620711797537102
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences United Sciences, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Barrows, N. J., Campos, R. K., Liao, K.-C., Prasanth, K. R., Soto-Acosta, R., Yeh, S.-C., Schott-Lerner, G., Pompon, J., Sessions, O. M., Bradrick, S. S., & Garcia-Blanco, M. A. (2018). Biochemistry and molecular biology of flaviviruses. Chemical Reviews, 118(8), 4448–4482. https://doi.org/10.1021/acs.chemrev.7b00719
  • Bassetto, M., De Burghgraeve, T., Delang, L., Massarotti, A., Coluccia, A., Zonta, N., Gatti, V., Colombano, G., Sorba, G., Silvestri, R., Tron, G. C., Neyts, J., Leyssen, P., & Brancale, A. (2013). Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus. Antiviral Research, 98(1), 12–18. https://doi.org/10.1016/j.antiviral.2013.01.002
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 47, D464–D474.
  • Bohari, M. H., & Sastry, G. N. (2012). FDA approved drugs complexed to their targets: Evaluating pose prediction accuracy of docking protocols. Journal of Molecular Modeling, 18(9), 4263–4274. https://doi.org/10.1007/s00894-012-1416-1
  • Boldescu, V., Behnam, M. A. M., Vasilakis, N., & Klein, C. D. (2017). Broad-spectrum agents for flaviviral infections: Dengue, zika and beyond. Nature Reviews Drug Discovery, 16(8), 565–586. https://doi.org/10.1038/nrd.2017.33
  • Brown, C. S., Lee, M. S., Leung, D. W., Wang, T., Xu, W., Luthra, P., Anantpadma, M., Shabman, R. S., Melito, L. M., MacMillan, K. S., Borek, D. M., Otwinowski, Z., Ramanan, P., Stubbs, A. J., Peterson, D. S., Binning, J. M., Tonelli, M., Olson, M. A., Davey, R. A., … Amarasinghe, G. K. (2014). In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. Journal of Molecular Biology, 426(10), 2045–2058. https://doi.org/10.1016/j.jmb.2014.01.010
  • Burt, F. J., Rolph, M. S., Rulli, N. E., Mahalingam, S., & Heise, M. T. (2012). Chikungunya: A re-emerging virus. The Lancet, 379(9816), 662–671. https://doi.org/10.1016/S0140-6736(11)60281-X
  • Cárdenas, W. B., Loo, Y.-M., Gale, M., Hartman, A. L., Kimberlin, C. R., Martínez-Sobrido, L., Saphire, E. O., & Basler, C. F. (2006). Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. Journal of Virology, 80(11), 5168–5178. https://doi.org/10.1128/JVI.02199-05
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet (London, England), 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Coloma, J., Jain, R., Rajashankar, K. R., García-Sastre, A., & Aggarwal, A. K. (2016). Structures of NS5 methyltransferase from Zika virus. Cell Reports, 20, 3097–3102.
  • Cui, L.-J., Zhang, C., Zhang, T., Lu, R.-J., Xie, Z.-D., Zhang, L.-L., Liu, C.-Y., Zhou, W.-M., Ruan, L., Ma, X.-J., & Tan, W.-J. (2011). Human coronaviruses HCoV-NL63 and HCoV-HKU1 in hospitalized children with acute respiratory infections in Beijing, China. Advances in Virology, 2011, 1–6. https://doi.org/10.1155/2011/129134
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N, log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Debing, Y., Jochmans, D., & Neyts, J. (2013). Intervention strategies for emerging viruses: Use of antivirals. Current Opinion in Virology, 3(2), 217–224. https://doi.org/10.1016/j.coviro.2013.03.001
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Farnon, E. (2006). Update: Chikungunya fever diagnosed among international travelers-United States, 2006. Morbidity and Mortality Weekly Report, 56, 276–277.
  • Feldmann, H., & Geisbert, T. W. (2011). Ebola haemorrhagic fever. Lancet (London, England), 377(9768), 849–862. https://doi.org/10.1016/S0140-6736(10)60667-8
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Filimonov, D., Poroikov, V., Borodina, Y., & Gloriozova, T. (1999). Chemical similarity assessment through multilevel neighborhoods of atoms: definition and comparison with the other descriptors. Journal of Chemical Information and Computer Sciences, 39(4), 666–670. https://doi.org/10.1021/ci980335o
  • Fuhrmans, M., Sanders, B. P., Marrink, S.-J., & de Vries, A. H. (2010). Effects of bundling on the properties of the SPC water model. Theoretical Chemistry Accounts, 125(3–6), 335–344. https://doi.org/10.1007/s00214-009-0590-4
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Gaur, A. S., Bhardwaj, A., & Sharma, A. (2017). Assessing therapeutic potential of molecules: Molecular property diagnostic suite for tuberculosis (MPDSTB). Journal of Chemical Sciences, 129, 515–531.
  • Gautret, P., Lagier, J.-C., Parola, P., Hoang, V. T., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., Tissot Dupont, H., Honoré, S., Colson, P., Chabrière, E., La Scola, B., Rolain, J.-M., Brouqui, P., & Raoult, D. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1), 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949
  • Gulland, A. (2016). Zika virus is a global public health emergency, declares WHO. BMJ, 352, 657.
  • Guzman, M. G. (2010). Dengue: A continuing global threat. Nature Reviews Microbiology, 8, 7–16.
  • Haas, W. H., Breuer, T., Pfaff, G., Schmitz, H., Köhler, P., Asper, M., Emmerich, P., Drosten, C., Gölnitz, U., Fleischer, K., & Günther, S. (2003). Imported Lassa fever in Germany: Surveillance and management of contact persons. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 36(10), 1254–1258. https://doi.org/10.1086/374853
  • Haasnoot, J., de Vries, W., Geutjes, E. J., Prins, M., de Haan, P., & Berkhout, B. (2007). The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing. PLoS Pathogens, 3(6), e86. https://doi.org/10.1371/journal.ppat.0030086
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hodos, R. A., Kidd, B. A., Shameer, K., Readhead, B. P., & Dudley, J. T. (2016). In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med, 8(3), 186–210. https://doi.org/10.1002/wsbm.1337
  • Holmes, G. P., McCormick, J. B., Trock, S. C., Chase, R. A., Lewis, S. M., Mason, C. A., Hall, P. A., Brammer, L. S., Perez-Oronoz, G. I., & McDonnell, M. K. (1990). Lassa fever in the United States. Investigation of a case and new guidelines for management . The New England Journal of Medicine, 323(16), 1120–1123. https://doi.org/10.1056/NEJM199010183231607
  • Howard, C. R., & Fletcher, N. F. (2012). Emerging virus diseases: Can we ever expect the unexpected? Emerging Microbes & Infections, 1(1), 1–9. https://doi.org/10.1038/emi.2012.47
  • Huey, R., & Morris, G. M. (2008). Using autodock4 with autodock tools: A tutorial. The Scripps Research Institute, 54–56.
  • Hulseberg, C. E., Feneant, L., & Szymanska-de Wijs, K. M. (2019). Arbidol and other low-molecular-weight drugs that inhibit Lassa and Ebola viruses. Journal of Virology, 93, e02185-18.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. ehttps://doi.org/10.1016/0263-7855(96)00018-5
  • Issur, M., Geiss, B. J., Bougie, I., Picard-Jean, F., Despins, S., Mayette, J., Hobdey, S. E., & Bisaillon, M. (2009). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA (New York, N.Y.), 15(12), 2340–2350. https://doi.org/10.1261/rna.1609709
  • Jadav, S. S., Sinha, B. N., Pastorino, B., Lamballerie, X., Hilgenfeld, R., & Jayaprakash, V. (2015). Identification of pyrazole derivative as an antiviral agent against Chikungunya through HTVS. Letters in Drug Design & Discovery, 12(4), 292–301. https://doi.org/10.2174/1570180811666141001005402
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jyotisha, Singh, S., & Qureshi, I. A. (2021). Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. Journal of Biomolecular Structure and Dynamics, 39. https://doi.org/10.1080/07391102.2020.1844060
  • Kanchan, A., John, Z., Parvesh, W., Jeroen, R. M., & Rolf, H. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 300, 1763–1767.
  • Kang, C., Keller, T., & Luo, D. (2017). Zika virus protease: An antiviral drug target. Trends in Microbiology, 25(10), 797–808. https://doi.org/10.1016/j.tim.2017.07.001
  • Kazeem, O. S., Temitope, U. K., Abdulmujeeb, T. O., Ataul, I., Rukayat, O. A., & Suaibu, O. B. (2019). Molecular dynamics and combined docking studies for the identification of Zaire Ebola Virus inhibitors. Journal of Biomolecular Structure and Dynamics, 37, 3029–3040.
  • Khan, A. H., Morita, K., Parquet, M. D. C., Hasebe, F., Mathenge, E. G. M., & Igarashi, A. (2002). Complete nucleotide sequence of chikungunya virus and evidence for an internal polyadenylation site. The Journal of General Virology, 83(Pt 12), 3075–3084. https://doi.org/10.1099/0022-1317-83-12-3075
  • Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., Yi, D., Johnson, K., Earl, L., Marczak, L. B., Shirude, S., Davis Weaver, N., Bisanzio, D., Perkins, T. A., Lai, S., Lu, X., Jones, P., Coelho, G. E., Carvalho, R. G., … Golding, N. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863. https://doi.org/10.1038/s41564-019-0376-y
  • Kumar, P., Kumar, D., & Giri, R. (2019). Targeting the nsp2 cysteine protease of Chikungunya virus using FDA approved library and selected cysteine protease inhibitors. Pathogens, 8(3), 128. https://doi.org/10.3390/pathogens8030128
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances . Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lai, B. C., Shih, T. P., Ko, W. C., Tang, H. J., & Hsueh, P. R. (2020). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International Journal of Antimicrobial Agents, 55(3), 105924–105924. https://doi.org/10.1016/j.ijantimicag.2020.105924
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Leonel, C. A., Lima, W. G., Dos Santos, M., Ferraz, A. C., Taranto, A. G., de Magalhães, J. C., Dos Santos, L. L., & Ferreira, J. M. S. (2018). Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: A systematic review of the most promising compounds. Archives of Virology, 163(3), 575–586. https://doi.org/10.1007/s00705-017-3641-5
  • Lescar, J., Luo, D., Xu, T., Sampath, A., Lim, S. P., Canard, B., & Vasudevan, S. G. (2008). Towards the design of antiviral inhibitors against flaviviruses: The case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Research, 80(2), 94–101. https://doi.org/10.1016/j.antiviral.2008.07.001
  • Leung, D. W., Ginder, N. D., Fulton, D. B., Nix, J., Basler, C. F., Honzatko, R. B., & Amarasinghe, G. K. (2009). Structure of the Ebola VP35 interferon inhibitory domain. Proceedings of the National Academy of Sciences of the United States of America, 106(2), 411–416. https://doi.org/10.1073/pnas.0807854106
  • Leung, D. W., Shabman, R. S., Farahbakhsh, M., Prins, K. C., Borek, D. M., Wang, T., Mühlberger, E., Basler, C. F., & Amarasinghe, G. K. (2010). Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain. Journal of Molecular Biology, 399(3), 347–357. https://doi.org/10.1016/j.jmb.2010.04.022
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Lim, S. P., Sonntag, L. S., Noble, C., Nilar, S. H., Ng, R. H., Zou, G., Monaghan, P., Chung, K. Y., Dong, H., Liu, B., Bodenreider, C., Lee, G., Ding, M., Chan, W. L., Wang, G., Jian, L. Y., Chao, A. T., Lescar, J., Yin, Z., … Shi, P. (2011). Small molecule inhibitors that selectively block dengue virus methyltransferase. The Journal of Biological Chemistry, 286(8), 6233–6240. https://doi.org/10.1074/jbc.M110.179184
  • Lin, K., Ali, A., Rusere, L., Soumana, D. I., Yilmaz, N. K., & Schiffer, C. A. (2017). Dengue virus NS2B/NS3 protease inhibitors exploiting the prime side. Journal of Virology, 91, e00045-17.
  • Lu, H. (2020). Drug treatment options for the 2019-new coronavirus (2019-nCoV). Bioscience Trends, 14(1), 69–71. https://doi.org/10.5582/bst.2020.01020
  • Malik, Y. S., Sircar, S., Bhat, S., Sharun, K., Dhama, K., Dadar, M., Tiwari, R., & Chaicumpa, W. (2020). Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. The Veterinary Quarterly, 40(1), 68–76. https://doi.org/10.1080/01652176.2020.1727993
  • March-Vila, E., Pinzi, L., Sturm, N., Tinivella, A., Engkvist, O., Chen, H., & Rastelli, G. (2017). On the integration of in silico drug design methods for drug repurposing. Frontiers in Pharmacology, 8, 298. https://doi.org/10.3389/fphar.2017.00298
  • Martinez, M. A. (2020). Clinical trials of repurposed antivirals for SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64, e01101-20.
  • Martínez-Sobrido, L., Emonet, S., Giannakas, P., Cubitt, B., García-Sastre, A., & de la Torre, J. C. (2009). Identification of amino acid residues critical for the anti-interferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus. Journal of Virology, 83(21), 11330–11340. https://doi.org/10.1128/JVI.00763-09
  • Martínez-Sobrido, L., Giannakas, P., Cubitt, B., García-Sastre, A., & de la Torre, J. C. (2007). Differential inhibition of type I interferon induction by arenavirus nucleoproteins. Journal of Virology, 81(22), 12696–12703. https://doi.org/10.1128/JVI.00882-07
  • Marwaha, A., Goel, R. K., & Mahajan, M. P. (2007). PASS-predicted design, synthesis and biological evaluation of cyclic nitrones as nootropics. Bioorganic & Medicinal Chemistry Letters, 17(18), 5251–5255. https://doi.org/10.1016/j.bmcl.2007.06.071
  • Mercorelli, B., Palù, G., & Loregian, A. (2018). Drug repurposing for viral infectious diseases: How far are we? Trends in Microbiology, 26(10), 865–876. https://doi.org/10.1016/j.tim.2018.04.004
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Narwal, M., Singh, H., Pratap, S., Malik, A., Kuhn, R. J., Kumar, P., & Tomar, S. (2018). Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. International Journal of Biological Macromolecules, 116, 451–462. https://doi.org/10.1016/j.ijbiomac.2018.05.007
  • Nguyen, P. T., Yu, H., & Keller, P. A. (2015). Identification of chikungunya virus nsP2 protease inhibitors using structure-base approaches. Journal of Molecular Graphics & Modelling, 57, 1–8. https://doi.org/10.1016/j.jmgm.2015.01.001
  • Nkoghe, D., Kassa, R. F., Caron, M., Grard, G., Mombo, I., Bikié, B., Paupy, C., Becquart, P., Bisvigou, U., & Leroy, E. M. (2012). Clinical forms of chikungunya in Gabon, 2010. PLoS Neglected Tropical Diseases, 6(2), e1517. https://doi.org/10.1371/journal.pntd.0001517
  • Noble, C. G., Seh, C. C., Chao, A. T., & Shi, P. Y. (2012). Ligand-bound structures of the dengue virus protease reveal the active conformation. Journal of Virology, 86(1), 438–446. https://doi.org/10.1128/JVI.06225-11
  • Nutho, B., Mahalapbutr, P., Hengphasatporn, K., Pattaranggoon, N. C., Simanon, N., Shigeta, Y., Hannongbua, S., & Rungrotmongkol, T. (2020). Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 59(18), 1769–1779. https://doi.org/10.1021/acs.biochem.0c00160
  • Pastorino, B. A. M., Peyrefitte, C. N., Almeras, L., Grandadam, M., Rolland, D., Tolou, H. J., & Bessaud, M. (2008). Expression and biochemical characterization of nsP2 cysteine protease of Chikungunya virus. Virus Research, 131(2), 293–298. https://doi.org/10.1016/j.virusres.2007.09.009
  • Peilin, W., Yang, L., Guangshun, Z., Shaobo, W., Jiao, G., Junyuan, C., Xiaoying, J., Leike, Z., Gengfu, X., & Wei, W. (2018). Screening and identification of lassa virus entry inhibitors from an FDA-approved drug library. Journal of Virology, 92, e00954-18.
  • Pinschewer, D. D., Perez, M., & de la Torre, J. C. (2003). Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. Journal of Virology, 77(6), 3882–3887. https://doi.org/10.1128/jvi.77.6.3882-3887.2003
  • Pizzorno, A., Padey, B., Terrier, O., & Rosa-Calatrava, M. (2019). Drug repurposing approaches for the treatment of influenza viral infection: Reviving old drugs to fight against a long-lived enemy. Frontiers in Immunology, 10, 531. https://doi.org/10.3389/fimmu.2019.00531
  • Pogodin, P. V., Lagunin, A. A., Rudik, A. V., Filimonov, D. A., Druzhilovskiy, D. S., Nicklaus, M. C., & Poroikov, V. V. (2018). How to achieve better results using pass-based virtual Screening: Case study for kinase inhibitors. Frontiers in Chemistry, 6, 133. https://doi.org/10.3389/fchem.2018.00133
  • Poroikov, V. V., Filimonov, D. A., Borodina, Y. V., Lagunin, A. A., & Kos, A. (2000). Robustness of biological activity spectra predicting by computer program pass for noncongeneric sets of chemical compounds. Journal of Chemical Information and Modeling, 40(6), 1349–1355. https://doi.org/10.1021/ci000383k
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Pyrc, K., Berkhout, B., & van der Hoek, L. (2007). The novel human coronaviruses NL63 and HKU1. Journal of Virology, 81(7), 3051–3057. https://doi.org/10.1128/JVI.01466-06
  • Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H., & Shi, P.-Y. (2006). West Nile virus 5'-cap structure is formed by sequential guanine N-7 and ribose 2'-O methylations by nonstructural protein 5. Journal of Virology, 80(17), 8362–8370. https://doi.org/10.1128/JVI.00814-06
  • Reddy, A. S., Pati, S. P., Kumar, P. P., Pradeep, H. N., & Sastry, G. N. (2007). Virtual screening in drug discovery - a computational perspective . Current Protein & Peptide Science, 8(4), 329–351. https://doi.org/10.2174/138920307781369427
  • Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J. F.-W., Cao, J., Poon, V. K.-M., Herbert, K. M., Cheng, K., Nguyen, T.-T H., Rubanov, A., Pu, Y., … Chanda, S. K. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586(7827), 113–119. https://doi.org/10.1038/s41586-020-2577-1
  • Roman, A. L., & Mark, B. S. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786.
  • Russo, A. T., White, M. A., & Watowich, S. J. (2006). The crystal structure of the Venezuelan equine encephalitis alphavirus nsP2 protease. Structure (London, England : 1993), 14(9), 1449–1458. https://doi.org/10.1016/j.str.2006.07.010
  • Santos, F. R. S., Nunes, D. A. F., Lima, W. G., Davyt, D., Santos, L. L., Taranto, A. G., & Ferreira, J. M. S. (2020). Identification of Zika virus NS2B-NS3 protease inhibitors by structure-based virtual screening and drug repurposing approaches. Journal of Chemical Information and Modeling, 60(2), 731–737. https://doi.org/10.1021/acs.jcim.9b00933
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal : EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schoeman, D., & Fielding, B. C. (2019). Coronavirus envelope protein: Current knowledge. Virology Journal, 16(1), 69. https://doi.org/10.1186/s12985-019-1182-0
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica Section D: Biological Crystallography , 60(Pt 8), 1355–1363. ehttps://doi.org/10.1107/S0907444904011679
  • Shaobo, W., Yang, L., Jiao, G., Peilin, W., Leike, Z., Gengfu, X., & Wei, W. (2017). Screening of FDA-approved drugs for inhibitors of Japanese encephalitis virus infection. Journal of Virology, 91, e01055.
  • Shtanko, O., Imai, M., Goto, H., Lukashevich, I. S., Neumann, G., Watanabe, T., & Kawaoka, Y. (2010). A role for the C terminus of Mopeia virus nucleoprotein in its incorporation into Z protein-induced virus-like particles. Journal of Virology, 84(10), 5415–5422. https://doi.org/10.1128/JVI.02417-09
  • Singh, S. K., & Unni, S. K. (2011). Chikungunya virus: Host pathogen interaction. Reviews in Medical Virology, 21(2), 78–88. https://doi.org/10.1002/rmv.681
  • Skariyachan, S., Gopal, D., Chakrabarti, S., Kempanna, P., Uttarkar, A., Muddebihalkar, A. G., & Niranjan, V. (2020). Structural and molecular basis of the interaction mechanism of selected drugs towards multiple targets of SARS-CoV-2 by molecular docking and dynamic simulation studies- deciphering the scope of repurposed drugs . Computers in Biology and Medicine, 126, 104054 https://doi.org/10.1016/j.compbiomed.2020.104054
  • Srivastava, H. K., & Sastry, G. N. (2012). Molecular dynamics investigation on a series of HIV protease inhibitors: Assessing the performance of MM-PBSA and MM-GBSA approaches. Journal of Chemical Information and Modeling, 52(11), 3088–3098. https://doi.org/10.1021/ci300385h
  • Staples, J. E., Breiman, R. F., & Powers, A. M. (2009). Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 49(6), 942–948. https://doi.org/10.1086/605496
  • Studio, D. (2008). Discovery Studio. Accelrys 2.1.
  • Sun, K., Chen, J., & Viboud, C. (2020). Early epidemiological analysis of the coronavirus disease 2019 outbreak based on crowdsourced data: A populationlevel observational study. Lancet Glob Health, 2, 201–208.
  • Trott, O., & Olson, A. J. (2010). AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Tsetsarkin, K. A., McGee, C. E., Volk, S. M., Vanlandingham, D. L., Weaver, S. C., & Higgs, S. (2009). Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedesalbopictus and Ae.aegypti mosquitoes. PLoS One, 4(8), e6835. https://doi.org/10.1371/journal.pone.0006835
  • Ursu, O., Holmes, J., Knockel, J., Bologa, C. G., Yang, J. J., Mathias, S. L., Nelson, S. J., & Oprea, T. I. (2017). DrugCentral: Online drug compendium. Nucleic Acids Research, 45(D1), D932–D939. https://doi.org/10.1093/nar/gkw993
  • Uzunova, K., Filipova, E., Pavlova, V., & Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomedicine & Pharmacotherapy, 131, 110668. https://doi.org/10.1016/j.biopha.2020.110668
  • Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine & International Health: TM & IH, 25(3), 278–280. https://doi.org/10.1111/tmi.13383
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Wang, B., Thurmond, S., Hai, R., & Song, J. (2018). Structure and function of Zika virus NS5 protein: Perspectives for drug design. Cellular and Molecular Life Sciences : CMLS, 75(10), 1723–1736. https://doi.org/10.1007/s00018-018-2751-x
  • Wilder-Smith, A., & Freedman, D. O. (2020). Isolation, quarantine, social distancing and community containment: Pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. Journal of Travel Medicine, 27, taaa020.
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Zhang, X., Yan, F., Tang, K., Chen, Q., Guo, J., Zhu, W., He, S., Banadyga, L., Qiu, X., & Guo, Y. (2019). Identification of a clinical compound losmapimod that blocks Lassa virus entry. Antiviral Research, 167, 68–77. https://doi.org/10.1016/j.antiviral.2019.03.014
  • Zhe, J., Ying, W., Xiao-Fei, Y., Qi-Qi, T., Shi-Shao, L., Tai, L., Hong, Z., Pang-Chui, S., Jian, W., & Chun, H. (2020). Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Computational Biology and Chemistry, 85, 107241.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.