2,192
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mechanistic insights into the inhibitory activity of FDA approved ivermectin against SARS-CoV-2: old drug with new implications

, , , , & ORCID Icon
Pages 8100-8111 | Received 21 Sep 2020, Accepted 17 Mar 2021, Published online: 05 May 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Buonfrate, D., Salas-Coronas, J., Muñoz, J., Maruri, B. T., Rodari, P., Castelli, F., Zammarchi, L., Bianchi, L., Gobbi, F., Cabezas-Fernández, T., Requena-Mendez, A., Godbole, G., Silva, R., Romero, M., Chiodini, P. L., & Bisoffi, Z. (2019). Multiple-dose versus single-dose ivermectin for Strongyloides stercoralis infection (Strong Treat 1 to 4): A multicentre, open-label, phase 3, randomised controlled superiority trial. The Lancet Infectious Diseases, 19(11), 1181–1190. https://doi.org/10.1016/S1473-3099(19)30289-0
  • Calina, D., Sarkar, C., Arsene, A. L., Salehi, B., Docea, A. O., Mondal, M., Islam, M. T., Zali, A., & Sharifi-Rad, J. (2020). Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunologic Research, 68(1), 1–10.
  • Caly, L., Druce, J. D., Catton, M. G., Jans, D. A., & Wagstaff, K. M. (2020). The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 178, 104787.
  • Caly, L., Wagstaff, K. M., & Jans, D. A. (2012). Nuclear trafficking of proteins from RNA viruses: Potential target for antivirals? Antiviral Research, 95(3), 202–206. https://doi.org/10.1016/j.antiviral.2012.06.008
  • Canga, A. G., Prieto, A. M. S., Liébana, M. J. D., Martínez, N. F., Vega, M. S., & Vieitez, J. J. G. (2008). The pharmacokinetics and interactions of ivermectin in humans—A mini-review. The AAPS Journal, 10(1), 42–46.
  • Chang, C.-C., Chen, C.-J., Grauffel, C., Pien, Y.-C., Lim, C., Tsai, S.-Y., & Hsia, K.-C. (2019). Ran pathway-independent regulation of mitotic Golgi disassembly by Importin-α. Nature Communications, 10(1), 1–16. https://doi.org/10.1038/s41467-019-12207-4
  • Chen, P., Mao, L., Nassis, G. P., Harmer, P., Ainsworth, B. E., & Li, F. (2020). Coronavirus disease (COVID-19): The need to maintain regular physical activity while taking precautions. Journal of Sport & Health Science, 9(2), 103–104. https://doi.org/10.1016/j.jshs.2020.02.001
  • Chen, Z., Hu, J., Zhang, Z., Jiang, S., Han, S., Yan, D., Zhuang, R., Hu, B., & Zhang, Z. (2020). Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial. MedRxiv.
  • Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S. A., Palese, P., & Baric, R. S. (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/Golgi membrane. Journal of Virology, 81(18), 9812–9824. https://doi.org/10.1128/JVI.01012-07
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Gautret, P., Lagier, J.-C., Parola, P., Meddeb, L., Mailhe, M., Doudier, B., Courjon, J., Giordanengo, V., Vieira, V. E., & Dupont, H. T. (2020). Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. International Journal of Antimicrobial Agents, 56(1),105949.
  • Götz, V., Magar, L., Dornfeld, D., Giese, S., Pohlmann, A., Höper, D., Kong, B.-W., Jans, D. A., Beer, M., & Haller, O. (2016). Influenza A viruses escape from MxA restriction at the expense of efficient nuclear vRNP import. Scientific Reports, 6(1), 1–15.
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hiscox, J. A., Wurm, T., Wilson, L., Britton, P., Cavanagh, D., & Brooks, G. (2001). The coronavirus infectious bronchitis virus nucleoprotein localizes to the nucleolus. Journal of Virology, 75(1), 506–512. https://doi.org/10.1128/JVI.75.1.506-512.2001
  • Holvey, R. S., Valkov, E., Neal, D., Stewart, M., & Abell, C. (2015). Selective targeting of the TPX2 site of importin-α using fragment-based ligand design. ChemMedChem, 10(7), 1232–1239. https://doi.org/10.1002/cmdc.201500014
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Jans, D. A., Martin, A. J., & Wagstaff, K. M. (2019). Inhibitors of nuclear transport. Current Opinion in Cell Biology, 58, 50–60. https://doi.org/10.1016/j.ceb.2019.01.001
  • Kosyna, F. K., Nagel, M., Kluxen, L., Kraushaar, K., & Depping, R. (2015). The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biological Chemistry, 396(12), 1357–1367. https://doi.org/10.1515/hsz-2015-0171
  • Lundberg, L., Pinkham, C., Baer, A., Amaya, M., Narayanan, A., Wagstaff, K. M., Jans, D. A., & Kehn-Hall, K. (2013). Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce Venezuelan Equine Encephalitis Virus replication. Antiviral Research, 100(3), 662–672. https://doi.org/10.1016/j.antiviral.2013.10.004
  • Lv, C., Liu, W., Wang, B., Dang, R., Qiu, L., Ren, J., Yan, C., Yang, Z., & Wang, X. (2018). Ivermectin inhibits DNA polymerase UL42 of pseudorabies virus entrance into the nucleus and proliferation of the virus in vitro and vivo. Antiviral Research, 159, 55–62. https://doi.org/10.1016/j.antiviral.2018.09.010
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory & Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Molecular Operating Environment (MOE). (2021). 2019.01; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7.
  • Nakada, R., Hirano, H., & Matsuura, Y. (2015). Structure of importin-α bound to a non-classical nuclear localization signal of the influenza A virus nucleoprotein. Scientific Reports, 5, 15055. https://doi.org/10.1038/srep15055
  • Naz, S., Baig, N., Khalil, R., & Ul-Haq, Z. (2019). Characterization of cryptic allosteric site at IL-4Rα: New paradigm towards IL-4/IL-4R inhibition. International Journal of Biological Macromolecules, 123, 239–245. https://doi.org/10.1016/j.ijbiomac.2018.10.204
  • Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications, 184(12), 2641–2650. https://doi.org/10.1016/j.cpc.2013.06.003
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pubchem I. N. Retrieved (accessed July 8) from https://pubchem.ncbi.nlm.nih.gov/compound/Ivermectin
  • Rowland, R. R., Chauhan, V., Fang, Y., Pekosz, A., Kerrigan, M., & Burton, M. D. (2005). Intracellular localization of the severe acute respiratory syndrome coronavirus nucleocapsid protein: absence of nucleolar accumulation during infection and after expression as a recombinant protein in vero cells. Journal of Virology, 79(17), 11507–11512. https://doi.org/10.1128/JVI.79.17.11507-11512.2005
  • Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034
  • Tay, M., Fraser, J. E., Chan, W., Moreland, N. J., Rathore, A. P., Wang, C., Vasudevan, S. G., & Jans, D. A. (2013). Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Research, 99(3), 301–306. https://doi.org/10.1016/j.antiviral.2013.06.002
  • Timani, K. A., Liao, Q., Ye, L., Zeng, Y., Liu, J., Zheng, Y., Ye, L., Yang, X., Lingbao, K., Gao, J., & Zhu, Y. (2005). Nuclear/nucleolar localization properties of C-terminal nucleocapsid protein of SARS coronavirus. Virus Research, 114(1–2), 23–34. https://doi.org/10.1016/j.virusres.2005.05.007
  • van der Watt, P. J., Chi, A., Stelma, T., Stowell, C., Strydom, E., Carden, S., Angus, L., Hadley, K., Lang, D., Wei, W., Birrer, M. J., Trent, J. O., & Leaner, V. D. (2016). Targeting the nuclear import receptor Kpnβ1 as an anticancer therapeutic. Molecular Cancer Therapeutics, 15(4), 560–573. https://doi.org/10.1158/1535-7163.MCT-15-0052
  • Vardhan, S., & Sahoo, S. K. (2020). Searching inhibitors for three important proteins of COVID-19 through molecular docking studies. [arXiv preprint arXiv:200408095].
  • Wagstaff, K. M., Rawlinson, S. M., Hearps, A. C., & Jans, D. A. (2011). An AlphaScreen®-based assay for high-throughput screening for specific inhibitors of nuclear import. Journal of Biomolecular Screening, 16(2), 192–200. https://doi.org/10.1177/1087057110390360
  • Wagstaff, K. M., Sivakumaran, H., Heaton, S. M., Harrich, D., & Jans, D. A. (2012). Ivermectin is a specific inhibitor of importin α/β-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochemical Journal, 443(3), 851–856. https://doi.org/10.1042/BJ20120150
  • WHO (2020). Coronavirus Disease (COVID-19) Situation Reports
  • Wulan, W. N., Heydet, D., Walker, E. J., Gahan, M. E., & Ghildyal, R. (2015). Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Frontiers in Microbiology, 6, 553. https://doi.org/10.3389/fmicb.2015.00553
  • Wurm, T., Chen, H., Hodgson, T., Britton, P., Brooks, G., & Hiscox, J. A. (2001). Localization to the nucleolus is a common feature of coronavirus nucleoproteins, and the protein may disrupt host cell division. Journal of Virology, 75(19), 9345–9356. https://doi.org/10.1128/JVI.75.19.9345-9356.2001
  • Yang, C., Xu, W., Gong, J., Liu, Z., & Cui, D. (2020). Novel somatic alterations underlie Chinese papillary thyroid carcinoma. Cancer Biomarkers, (Preprint), 1–16.
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.