261
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Binding of hydroxychloroquine and chloroquine dimers to palmitoyl-protein thioesterase 1 (PPT1) and its glycosylated forms: a computational approach

& ORCID Icon
Pages 8197-8205 | Received 16 Jan 2021, Accepted 19 Mar 2021, Published online: 20 Apr 2021

References

  • Amaravadi, R. K., & Winkler, J. D. (2012). Lys05: A new lysosomal autophagy inhibitor. Autophagy, 8(9), 1383–1384. https://doi.org/10.4161/auto.20958
  • Bagri, K. M., Rosa, I. A., Corrêa, S., Yamashita, A., Brito, J., Bloise, F., Costa, M. L., & Mermelstein, C. (2020). Acidic compartment size, positioning, and function during myogenesis and their modulation by the Wnt/Beta-catenin pathway. BioMed Research International, 2020, 6404230. https://doi.org/10.1155/2020/6404230
  • Bailly, C., & Vergoten, G. (2020). N-glycosylation and ubiquitinylation of PD-L1 do not restrict interaction with BMS-202: A molecular modeling study. Computational Biology and Chemistry, 88, 107362. https://doi.org/10.1016/j.compbiolchem.2020.107362
  • Balouch, B., Nagorsky, H., Pham, T., LaGraff, J. T., & Chu-LaGraff, Q. (2021). Human INCL fibroblasts display abnormal mitochondrial and lysosomal networks and heightened susceptibility to ROS-induced cell death. PLoS One, 16(2), e0239689. https://doi.org/10.1371/journal.pone.0239689
  • Bellizzi, J. J., 3rd, Widom, J., Kemp, C., Lu, J. Y., Das, A. K., Hofmann, S. L., & Clardy, J. (2000). The crystal structure of palmitoyl protein thioesterase 1 and the molecular basis of infantile neuronal ceroid lipofuscinosis. Proceedings of the National Academy of Sciences of the United States of America, 97(9), 4573–4578. https://doi.org/10.1073/pnas.080508097
  • Bravo, M. F., Palanichamy, K., Shlain, M. A., Schiro, F., Naeem, Y., Marianski, M., & Braunschweig, A. B. (2020). Synthesis and binding of mannose-specific synthetic carbohydrate receptors. Chemistry (Weinheim an der Bergstrasse, Germany), 26(51), 11782–11795. https://doi.org/10.1002/chem.202000481
  • Cho, S., & Dawson, G. (2000). Palmitoyl protein thioesterase 1 protects against apoptosis mediated by Ras-Akt-caspase pathway in neuroblastoma cells. Journal of Neurochemistry, 74(4), 1478–1488. https://doi.org/10.1046/j.1471-4159.2000.0741478.x
  • Cho, S., Dawson, P. E., & Dawson, G. (2000). Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. Journal of Neuroscience Research, 62(2), 234–240. https://doi.org/10.1002/1097-4547(20001015)62:2<234::AID-JNR8>3.0.CO;2-8
  • Cho, S., Dawson, P. E., & Dawson, G. (2001). Role of palmitoyl-protein thioesterase in cell death: Implications for infantile neuronal ceroid lipofuscinosis. European Journal of Paediatric Neurology, 5, 53–55. https://doi.org/10.1053/ejpn.2000.0435
  • Crews, C. M., Lane, W. S., & Schreiber, S. L. (1996). Didemnin binds to the protein palmitoyl thioesterase responsible for infantile neuronal ceroid lipofuscinosis. Proceedings of the National Academy of Sciences of the United States of America, 93(9), 4316–4319. https://doi.org/10.1073/pnas.93.9.4316
  • Dalal, V., Dhankhar, P., Singh, V., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein Journal. https://doi.org/10.1007/s10930-020-09953-6
  • Dawson, G., Dawson, S. A., Marinzi, C., & Dawson, P. E. (2002). Anti-tumor promoting effects of palmitoyl: Protein thioesterase inhibitors against a human neurotumor cell line. Cancer Letters, 187(1–2), 163–168. https://doi.org/10.1016/s0304-3835(02)00403-2
  • Dhankhar, P., Dalal, V., Kotra, D. G., & Kumar, P. (2020). In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience (Landmark Edition), 25, 1337–1360.
  • Dhankhar, P., Dalal, V., Singh, V., Tomar, S., & Kumar, P. (2020). Computational guided identification of novel potent inhibitors of N-terminal domain of nucleocapsid protein of severe acute respiratory syndrome coronavirus 2. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1852968
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Jorgensen, W. L., & Tirado-Rives, J. (2005). Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. Journal of Computational Chemistry, 26(16), 1689–1700. https://doi.org/10.1002/jcc.20297
  • Jorgensen, W. L., Ulmschneider, J. P., & Tirado-Rives, J. (2004). Free energies of hydration from a generalized Born model and an ALL-atom force field. The Journal of Physical Chemistry B, 108(41), 16264–16270. https://doi.org/10.1021/jp0484579
  • Koster, K. P., & Yoshii, A. (2019). Depalmitoylation by palmitoyl-protein thioesterase 1 in neuronal health and degeneration. Frontiers in Synaptic Neuroscience, 11, 25. https://doi.org/10.3389/fnsyn.2019.00025
  • Kumari, R., Dhankhar, P., & Dalal, V. (2021). Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. Journal of Molecular Graphics & Modelling, 105, 107870. https://doi.org/10.1016/j.jmgm.2021.107870
  • Lagant, P., Nolde, D., Stote, R., Vergoten, G., & Karplus, M. (2004). Increasing normal modes analysis accuracy: The SPASIBA spectroscopic force field introduced into the CHARMM program. The Journal of Physical Chemistry A, 108(18), 4019–4029. https://doi.org/10.1021/jp031178l
  • Lyly, A., von Schantz, C., Salonen, T., Kopra, O., Saarela, J., Jauhiainen, M., Kyttälä, A., & Jalanko, A. (2007). Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1)–Distinct characteristics in neurons. BMC Cell Biology, 8(1), 22. https://doi.org/10.1186/1471-2121-8-22
  • McAfee, Q., Zhang, Z., Samanta, A., Levi, S. M., Ma, X. H., Piao, S., Lynch, J. P., Uehara, T., Sepulveda, A. R., Davis, L. E., Winkler, J. D., & Amaravadi, R. K. (2012). Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8253–8258. https://doi.org/10.1073/pnas.1118193109
  • Meng, L., Sin, N., & Crews, C. M. (1998). The antiproliferative agent didemnin B uncompetitively inhibits palmitoyl protein thioesterase. Biochemistry, 37(29), 10488–10492. https://doi.org/10.1021/bi9804479
  • Nicastri, M. C., Rebecca, V. W., Amaravadi, R. K., & Winkler, J. D. (2018). Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Molecular & Cellular Oncology, 5(1), https://doi.org/10.1080/23723556.2017.1395504
  • Potts, M. B., McMillan, E. A., Rosales, T. I., Kim, H. S., Ou, Y. H., Toombs, J. E., Brekken, R. A., Minden, M. D., MacMillan, J. B., & White, M. A. (2015). Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nature Chemical Biology, 11(6), 401–408. https://doi.org/10.1038/nchembio.1797
  • Rebecca, V. W., Nicastri, M. C., Fennelly, C., Chude, C. I., Barber-Rotenberg, J. S., Ronghe, A., McAfee, Q., McLaughlin, N. P., Zhang, G., Goldman, A. R., Ojha, R., Piao, S., Noguera-Ortega, E., Martorella, A., Alicea, G. M., Lee, J. J., Schuchter, L. M., Xu, X., Herlyn, M., … Amaravadi, R. K. (2019). PPT1 promotes tumor growth and is the molecular target of chloroquine derivatives in cancer. Cancer Discovery, 9(2), 220–229. https://doi.org/10.1158/2159-8290.CD-18-0706
  • Rebecca, V. W., Nicastri, M. C., McLaughlin, N., Fennelly, C., McAfee, Q., Ronghe, A., Nofal, M., Lim, C. Y., Witze, E., Chude, C. I., Zhang, G., Alicea, G. M., Piao, S., Murugan, S., Ojha, R., Levi, S. M., Wei, Z., Barber-Rotenberg, J. S., Murphy, M. E., … Amaravadi, R. K. (2017). A unified approach to targeting the lysosome's degradative and growth signaling roles. Cancer Discovery, 7(11), 1266–1283. https://doi.org/10.1158/2159-8290.CD-17-0741
  • Sapir, T., Segal, M., Grigoryan, G., Hansson, K. M., James, P., Segal, M., Reiner, O. (2019). The interactome of Palmitoyl-Protein Thioesterase 1 (PPT1) affects neuronal morphology and function. Frontiers in Cellular Neuroscience, 13, 92. https://doi.org/10.3389/fncel.2019.00092
  • Sarkar, C., Chandra, G., Peng, S., Zhang, Z., Liu, A., & Mukherjee, A. B. (2013). Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: Therapeutic implications for INCL. Nature Neuroscience, 16(11), 1608–1617. https://doi.org/10.1038/nn.3526
  • Sarkar, C., Sadhukhan, T., Bagh, M. B., Appu, A. P., Chandra, G., Mondal, A., Saha, A., & Mukherjee, A. B. (2020). Cln1-mutations suppress Rab7-RILP interaction and impair autophagy contributing to neuropathology in a mouse model of infantile neuronal ceroid lipofuscinosis. Journal of Inherited Metabolic Disease, 43(5), 1082–1101. https://doi.org/10.1002/jimd.12242
  • Shakya, B., Shakya, S., & Hasan Siddique, Y. (2019). Effect of geraniol against arecoline induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg9. Toxicology Mechanisms and Methods, 29(3), 187–202. https://doi.org/10.1080/15376516.2018.1534299
  • Sharma, G., Ojha, R., Noguera-Ortega, E., Rebecca, V. W., Attanasio, J., Liu, S., Piao, S., Lee, J. J., Nicastri, M. C., Harper, S. L., Ronghe, A., Jain, V., Winkler, J. D., Speicher, D. W., Mastio, J., Gimotty, P. A., Xu, X., Wherry, E. J., Gabrilovich, D. I., & Amaravadi, R. K. (2020). PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight, 5(17), e133225. https://doi.org/10.1172/jci.insight.133225
  • Sheth, J., Mistri, M., Bhavsar, R., Pancholi, D., Kamate, M., Gupta, N., Kabra, M., Mehta, S., Nampoothiri, S., Thakker, A., Jain, V., Shah, R., & Sheth, F. (2018). Batten disease: Biochemical and molecular characterization revealing novel PPT1 and TPP1 gene mutations in Indian patients. BMC Neurology, 18(1), 203. https://doi.org/10.1186/s12883-018-1206-1
  • Shimomura, O., Oda, T., Tateno, H., Ozawa, Y., Kimura, S., Sakashita, S., Noguchi, M., Hirabayashi, J., Asashima, M., & Ohkohchi, N. (2018). A novel therapeutic strategy for pancreatic cancer: Targeting cell surface glycan using rBC2LC-N lectin-drug conjugate (LDC). Molecular Cancer Therapeutics, 17(1), 183–195. https://doi.org/10.1158/1535-7163.MCT-17-0232
  • Tardy, C., Sabourdy, F., Garcia, V., Jalanko, A., Therville, N., Levade, T., & Andrieu-Abadie, N. (2009). Palmitoyl protein thioesterase 1 modulates tumor necrosis factor alpha-induced apoptosis. Biochimica et Biophysica Acta, 1793(7), 1250–1258. https://doi.org/10.1016/j.bbamcr.2009.03.007
  • Tsukamoto, T., Iida, J., Dobashi, Y., Furukawa, T., & Konishi, F. (2006). Overexpression in colorectal carcinoma of two lysosomal enzymes, CLN2 and CLN1, involved in neuronal ceroid lipofuscinosis. Cancer, 106(7), 1489–1497. https://doi.org/10.1002/cncr.21764
  • Vergoten, G., & Bailly, C. (2020). N-glycosylation of High Mobility Group Box 1 protein (HMGB1) modulates the interaction with glycyrrhizin: A molecular modeling study. Computational Biology and Chemistry, 88, 107312. https://doi.org/10.1016/j.compbiolchem.2020.107312
  • Vergoten, G., Mazur, I., Lagant, P., Michalski, J. C., & Zanetta, J. P. (2003). The SPASIBA force field as an essential tool for studying the structure and dynamics of saccharides. Biochimie, 85(1–2), 65–73. https://doi.org/10.1016/S0300-9084(03)00052-X
  • Wang, M., Wang, J., Wang, R., Jiao, S., Wang, S., Zhang, J., & Zhang, M. (2019). Identification of a monoclonal antibody that targets PD-1 in a manner requiring PD-1 Asn58 glycosylation. Communications Biology, 2, 392. https://doi.org/10.1038/s42003-019-0642-9
  • Zhou, Q. (2018). Recent progress in clinical development of therapeutic antibodies targeting glycan-binding proteins. Current Drug Targets, 19(13), 1491–1497. https://doi.org/10.2174/1389450119666180308144313

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.