88
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A study of Pb2+ induced unfolding and aggregation of arginine kinase from Euphausia superba: kinetics and computational simulation integrating study

, , , , , & show all
Pages 8206-8215 | Received 07 Feb 2021, Accepted 19 Mar 2021, Published online: 13 Apr 2021

References

  • Abe, H., Hirai, S., & Okada, S. (2007). Metabolic responses and arginine kinase expression under hypoxic stress of the kuruma prawn Marsupenaeus japonicas. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 146(1), 40–46. https://doi.org/10.1016/j.cbpa.2006.08.027
  • Aimo, L., & Oteiza, P. I. (2006). Zinc deficiency increases the susceptibility of human neuroblastoma cells to lead-induced activator protein-1 activation. Toxicological Sciences : An Official Journal of the Society of Toxicology, 91(1), 184–191. https://doi.org/10.1093/toxsci/kfj137
  • Behbahani, M., Bide, Y., Salarian, M., Niknezhad, M., Bagheri, S., Bagheri, A., & Nabid, M. R. (2014). The use of tetragonal star-like polyaniline nanostructures for efficient solidphase extraction and trace detection of Pb(II) and Cu(II) in agricultural products, sea foods, and water samples. Food Chemistry, 158, 14–19. https://doi.org/10.1016/j.foodchem.2014.02.110
  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), D36–42. https://doi.org/10.1093/nar/gks1195
  • Beyersmann, D., & Hartwig, A. (2008). Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Archives of Toxicology, 82(8), 493–512. https://doi.org/10.1007/s00204-008-0313-y
  • Bowman, T. E. (1964). The natural history and geography of the Antarctic krill (Euphausia superba Dana). The Quarterly Review of Biology, 39(2), 193–194. https://doi.org/10.1086/404171
  • Brown, A. E., France, R. M., & Grossman, (2004). Purification and characterization of arginine kinase from the American cockroach (Periplaneta americana). Archives of Insect Biochemistry and Physiology, 56(2), 51–60. S. H.& https://doi.org/10.1002/arch.10143
  • Buchholz, F. (1991). Moult cycle and growth of Antarctic krill, Euphausia superba in the laboratory. Marine Ecology Progress Series, 69, 217–229. https://doi.org/10.3354/meps069217
  • Christopher, M. D., & Ellis, R. J. (1998). Protein folding and misfolding inside and outside the cell. The EMBO Journal, 17, 5251–5254.
  • De Schamphelaere, K. A., Nys, C., & Janssen, C. R. (2014). Toxicity of lead (Pb) to fresh water green algae: Development and validation of a bioavailability model and interspecies sensitivity comparison. Aquatic Toxicology, 155, 348–359. https://doi.org/10.1016/j.aquatox.2014.07.008
  • Dziadik-Turner, C., Koga, D., Mai, M. S., & Kramer, K. J. (1981). Purification and characteriza-tion of two β-N-acetylhexosaminidases from the tobacco hornworm, Manduca sexta (L.) (Lepidoptera: Sphingidae). Archives of Biochemistry and Biophysics, 212(2), 546–560. https://doi.org/10.1016/0003-9861(81)90398-2
  • Ellington, W. R. (2001). Evolution and physiological roles of phosphagen systems. Annual Review of Physiology, 63(1), 289–325. https://doi.org/10.1146/annurev.physiol.63.1.289
  • Gou, L., Lü, Z. R., Park, D., Oh, S. H., Shi, L., Park, S. J., Bhak, J., Park, Y. D., Ren, Z. L., & Zou, F. (2008). The effect of histidine residue modification on tyrosinase activity and conformation: Inhibition kinetics and computational prediction. Journal of Biomolecular Structure and Dynamics, 26(3), 395–402. https://doi.org/10.1080/07391102.2008.10507254
  • Greenough, M. A., Camakaris, J., & Bush, A. I. (2013). Metal dyshomeostasis and oxidative stress in Alzheimer’s disease. Neurochemistry International, 62(5), 540–555. https://doi.org/10.1016/j.neuint.2012.08.014
  • Hariharan, G., Purvaja, R., & Ramesh, R. (2014). Toxic effects of lead on biochemical and histological alterations in green mussel (Perna viridis) induced by environmentally relevant concentrations. Journal of Toxicology and Environmental Health, Part A, 77(5), 246–260. https://doi.org/10.1080/15287394.2013.861777
  • Hill, S. L., Murphy, E. J., Reid, K., Trathan, P. N., & Constable, A. J. (2006). Modelling Southern Ocean ecosystems: Krill, the food-web, and the impacts of harvesting. Biological Reviews of the Cambridge Philosophical Society, 81(4), 581–608. https://doi.org/10.1017/S1464793106007123
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 28–33. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kim, T. R., Oh, S., Yang, J. S., Lee, S., Shin, S., & Lee, J. (2012). A simplified homology-model builder toward highly protein-like structures: An inspection of restraining potentials. Journal of Computational Chemistry, 33(24), 1927–1935. https://doi.org/10.1002/jcc.23024
  • Kim, T. R., Yang, J. S., Shin, S., & Lee, J. (2013). Statistical torsion angle potential energy functions for protein structure modeling: A bicubic interpolation approach. Proteins, 81(7), 1156–1165. https://doi.org/10.1002/prot.24265
  • Kinsey, S. T., & Lee, B. C. (2003). The effects of rapid salinity change on in vivo arginine kinase flux in the juvenile blue crab, Callinectes sapidus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 135(3), 521–531. https://doi.org/10.1016/S1096-4959(03)00121-0
  • Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371–384. https://doi.org/10.1038/nrmicro3028
  • Lim, K., Pullalarevu, S., Surabian, K. T., Howard, A., Suzuki, T., Moult, J., & Herzberg, O. (2010). Structural basis for the mechanism and substrate specificity of glycocyamine kinase, a phosphagen kinase family member. Biochemistry, 49(9), 2031–2041. https://doi.org/10.1021/bi9020988
  • Morris, S., van Aardt, W. J., & Ahern, M. D. (2005). The effect of lead on the metabolic and energetic status of the Yabby, Cherax destructor, during environmental hypoxia. Aquatic Toxicology (Amsterdam, Netherlands), 75(1), 16–31. https://doi.org/10.1016/j.aquatox.2005.07.001
  • O'Brien, A. L., & Keough, M. J. (2014). Ecological responses to contamination: A meta-analysis of experimental marine studies. Environmental Pollution, 195, 185–191. https://doi.org/10.1016/j.envpol.2014.09.005
  • Pan, J. C., Wang, J. S., Cheng, Y., Yu, Z., Rao, X. M., & Zhou, H. M. (2005). The role of detergent in refolding of GdnHCl-denatured arginine kinase from shrimp Fenneropenaeus Chinensis: The solubilization of aggregate and refolding in detergent solutions. Biochemistry and Cell Biology, 83(2), 140–146. https://doi.org/10.1139/o05-018
  • Pereira, C. A. (2014). Arginine kinase: A potential pharmacological target in trypanosomiasis. Infectious Disorders Drug Targets, 14(1), 30–36. https://doi.org/10.2174/1871526514666140713144103
  • Pereira, C. A., Alonso, G. D., Paveto, M. C., Iribarren, A., Cabanas, M. L., Torres, H. N., & Flawiá, M. M. (2000). Trypanosoma cruzi arginine kinase characterization and cloning. A novel energetic pathway in protozoan parasites. The Journal of Biological Chemistry, 275(2), 1495–1501. https://doi.org/10.1074/jbc.275.2.1495
  • Peters, G., Saborowski, R., Mentlein, R., & Buchholz, F. (1998). Isoforms of an N-acetyl-β-D-glucosaminidase from the Antarctic krill, Euphausia superba: Purification and antibody production. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(4), 743–751. https://doi.org/10.1016/S0305-0491(98)10073-1
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Sheng, Q., Lü, Z. R., Mu, H., Zou, H. C., Zou, F., & Yao, S. J. (2009). The effect of Ag+ on arginine kinase: Inhibition kinetics. Journal of Biomolecular Structure and Dynamics, 27, 59–64.
  • Remmert, M., Biegert, A., Hauser, A., & Söding, J. (2011). HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2), 173–175. https://doi.org/10.1038/nmeth.1818
  • Shinkai, Y., & Kaji, T. (2012). Cellular defense mechanisms against lead toxicity in the vascular system. Biological & Pharmaceutical Bulletin, 35(11), 1885–1891. https://doi.org/10.1248/bpb.b212018
  • Si, Y. X., Lee, J., Yin, S. J., Gu, X. X., Park, Y. D., & Qian, G. Y. (2015). The inhibitory effects of Cu(2+) on Exopalaemon carinicauda arginine kinase via inhibition kinetics and molecular dynamics simulations. Applied Biochemistry and Biotechnology, 176(4), 1217–1236. https://doi.org/10.1007/s12010-015-1641-z
  • Silvestre, F., Dierick, J. F., Dumont, V., Dieu, M., Raes, M., & Devos, P. (2006). Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium. Aquatic Toxicology (Amsterdam, Netherlands), 76(1), 46–58. https://doi.org/10.1016/j.aquatox.2005.09.006
  • Si, Y. X., Song, J. J., Fang, N. Y., Wang, W., Wang, Z. J., Yang, J. M., Qian, G. Y., Yin, S. J., & Park, Y. D. (2014). Purification, characterization, and unfolding studies of arginine kinase from Antarctic krill. International Journal of Biological Macromolecules, 67, 426–432. https://doi.org/10.1016/j.ijbiomac.2014.03.044
  • Tamás, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., & Christen, P. (2014). Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules, 4(1), 252–267. https://doi.org/10.3390/biom4010252
  • Waldron, K. J., Rutherford, J. C., Ford, D., & Robinson, N. J. (2009). Metalloproteins and metal sensing. Nature, 460(7257), 823–830.
  • Wang, H. C., Zhang, L., Zhang, L., Lin, Q., & Liu, N. (2009). Arginine kinase: Differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta. Gene, 430(1–2), 38–43. https://doi.org/10.1016/j.gene.2008.10.021
  • Wysocki, R., & Tamás, M. J. (2010). How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiology Reviews, 34(6), 925–951. https://doi.org/10.1111/j.1574-6976.2010.00217.x
  • Xiang, J. J., Zhai, Y. F., Tang, Y., Wang, H., Liu, B., & Guo, C. W. (2010). A competitive indirect enzyme-linked immunoassay for lead ion measurement using mAbs against the lead-DTPA complex. Environmental Pollution (Barking, Essex : 1987), 158(5), 1376–1380. https://doi.org/10.1016/j.envpol.2010.01.002
  • Yao, C.-L., Ji, P.-F., Kong, P., Wang, Z.-Y., & Xiang, J.-H. (2009). Arginine kinase from Litopenaeus vannamei: Cloning, expression and catalytic properties. Fish & Shellfish Immunology, 26(3), 553–558. https://doi.org/10.1016/j.fsi.2009.02.012
  • Yu, Z., Pan, J., & Zhou, H. M. (2002). A direct continuous pH-spectrophotometric assay for arginine kinase activity. Protein and Peptide Letters, 9(6), 545–552. https://doi.org/10.2174/0929866023408382
  • Zhang, R. Q., Chen, Q. X., Xiao, R., Xie, L. P., Zeng, X. G., & Zhou, H. M. (2001). Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase by zinc ions: A new type of complexing inhibition. Biochimica et Biophysica Acta, 1545(1–2), 6–12. https://doi.org/10.1016/s0167-4838(00)00254-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.