2,436
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

In silico characterization of mutations circulating in SARS-CoV-2 structural proteins

, ORCID Icon, , , , ORCID Icon, , & ORCID Icon show all
Pages 8216-8231 | Received 09 Jun 2020, Accepted 19 Mar 2021, Published online: 02 Apr 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alfalah, M., Keiser, M., Leeb, T., Zimmer, K. P., & Naim, H. Y. (2009). Compound heterozygous mutations affect protein folding and function in patients with congenital sucrase-isomaltase deficiency. Gastroenterology, 136(3), 883–892. https://doi.org/10.1053/j.gastro.2008.11.038
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440–11. https://doi.org/10.1371/journal.pcbi.1003440
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bhattacharyya, C., Das, C., Ghosh, A., Singh, A. K., Nukherjee, S., Majumder, P. P., Basu, A., & Biswas, N. K. (2020). Global spread of SARS-CoV-2 subtype with spike protein mutation D614G is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 genes. bioRxiv. https://doi.org/10.1101/2020.05.04.075911.
  • Bianchi, M., Benvenuto, D., Giovanetti, M., Angeletti, S., Ciccozzi, M., & Pascarella, S. (2020). Sars-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? BioMed Research International, 2020, 4389089. https://doi.org/10.1155/2020/4389089
  • Blocquel, D., Sun, L., Matuszek, Z., Li, S., Weber, T., Kuhle, B., Kooi, G., Wei, N., Baets, J., Pan, T., Schimmel, P., & Yang, X. L. (2019). CMT disease severity correlates with mutation-induced open conformation of histidyl-tRNA synthetase, not aminoacylation loss, in patient cells. Proceedings of the National Academy of Sciences of the United States of America, 116(39), 19440–19448. https://doi.org/10.1073/pnas.1908288116
  • Boehr, D. D., Schnell, J. R., McElheny, D., Bae, S. H., Duggan, B. M., Benkovic, S. J., Dyson, H. J., & Wright, P. E. (2013). A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Biochemistry, 52(27), 4605–4619. https://doi.org/10.1021/bi400563c
  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry, 4(2), 187–217. https://doi.org/10.1002/jcc.540040211
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(suppl_2), W306–310. https://doi.org/10.1093/nar/gki375
  • Capriotti, E., Nehrt, N. L., Kann, M. G., & Bromberg, Y. (2012). Bioinformatics for personal genome interpretation. Brief Bioinform, 13(4), 495–512. https://doi.org/10.1093/bib/bbr070
  • Dasgupta, R. (2020). Mutations in structural proteins of SARS-CoV-2 and potential implications for the ongoing outbreak of infection in India. AJIR Preprint. https://doi.org/10.21467/preprints.202
  • Doss, C. G. P., Rajith, B., Garwasis, N., Mathew, P. R., Raju, A. S., Apoorva, K., William, D., Sadhana, N. R., Himani, T., & Dike, I. P. (2012). Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis. Applied & Translational Genomics, 1, 37–43. https://doi.org/10.1016/j.atg.2012.06.002
  • Eisenmesser, E. Z., Millet, O., Labeikovsky, W., Korzhnev, D. M., Wolf-Watz, M., Bosco, D. A., Skalicky, J. J., Kay, L. E., & Kern, D. (2005). Intrinsic dynamics of an enzyme underlies catalysis. Nature, 438(7064), 117–121. https://doi.org/10.1038/nature04105
  • Fernandez, A. (2020). Structural impact of mutation D614G in SARS-CoV-2 spike protein: Enhanced infectivity and therapeutic opportunity. ACS Medicinal Chemistry Letters, 11(9), 1667–1670. https://doi.org/10.1021/acsmedchemlett.0c00410
  • Fiser, A., & Sali, A. (2003). ModLoop: Automated modeling of loops in protein structures. Bioinformatics (Oxford, England), 19(18), 2500–2501. https://doi.org/10.1093/bioinformatics/btg362
  • Forster, P., Forster, L., Renfrew, C., & Forster, M. (2020). Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9241–9243. https://doi.org/10.1073/pnas.2004999117
  • Frappier, V., & Najmanovich, R. J. (2014). A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations. PLoS Computational Biology, 10(4), e1003569. https://doi.org/10.1371/journal.pcbi.1003569
  • Gobeil, S. M. C., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Manne, K., Stalls, V., Kopp, M. F., Henderson, R., Edwards, R. J., Haynes, B. F., & Acharya, P. (2021). D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Reports, 34(2), 108630. https://doi.org/10.1016/j.celrep.2020.108630
  • Halushka, M. K., Fan, J. B., Bentley, K., Hsie, L., Shen, N., Weder, A., Cooper, R., Lipshutz, R., & Chakravarti, A. (1999). Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genetics, 22(3), 239–247. https://doi.org/10.1038/10297
  • Hospital, A., Andrio, P., Fenollosa, C., Cicin-Sain, D., Orozco, M., & Gelpí, J. L. (2012). MDWeb and MDMoby: An integrated web-based platform for molecular dynamics simulations. Bioinformatics (Oxford, England), 28(9), 1278–1279. https://doi.org/10.1093/bioinformatics/bts139
  • Hou, Y. J., Chiba, S., Halfmann, P., Ehre, C., Kuroda, M., Dinnon, K. H., Leist, S. R., Schäfer, A., Nakajima, N., Takahashi, K., Lee, R. E., Mascenik, T. M., Graham, R., Edwards, C. E., Tse, L. V., Okuda, K., Markmann, A. J., Bartelt, L., de Silva, A., … Baric, R. S. (2020). SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science (New York, N.Y.), 370(6523), 1464–1468.https://doi.org/10.1126/science.abe8499
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D. B., & Blundell, T. L. (2017). Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. Journal of Molecular Biology, 429(3), 365–371. https://doi.org/10.1016/j.jmb.2016.12.004
  • Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., Chen, Q., Yan, Y., Zhang, C., Shan, H., & Chen, S. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceutica Sinica B, 10(7), 1228–1238. https://doi.org/10.1016/j.apsb.2020.04.009
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Montefiori, D. C. (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  • Laamarti, M., Alouane, T., Kartti, S., Chemao-Elfihri, M. W., Hakmi, M., Essabbar, A., Laamarti, M., Hlali, H., Bendani, H., Boumajdi, N., Benhrif, O., Allam, L., El Hafidi, N., El Jaoudi, R., Allali, I., Marchoudi, N., Fekkak, J., Benrahma, H., Nejjari, C., … Ibrahimi, A. (2020). Large scale genomic analysis of 3067 SARS-CoV-2 genomes reveals a clonal geo-distribution and a rich genetic variations of hotspots mutations. PLoS One, 15(11), e0240345. https://doi.org/10.1371/journal.pone.0240345
  • Li, G., Panday, S. K., & Alexov, E. (2021). SAAFEC-SEQ: A sequence-based method for predicting the effect of single point mutations on protein thermodynamic stability. International Journal of Molecular Sciences, 22(2), 606–616. https://doi.org/10.3390/ijms22020606
  • Lorch, M., Mason, J. M., Clarke, A. R., & Parker, M. J. (1999). Effects of core mutations on the folding of a beta-sheet protein: Implications for backbone organization in the I-state. Biochemistry, 38(4), 1377–1385. https://doi.org/10.1021/bi9817820
  • Lorch, M., Mason, J. M., Sessions, R. B., & Clarke, A. R. (2000). Effects of mutations on the thermodynamics of a protein folding reaction: Implications for the mechanism of formation of the intermediate and transition states. Biochemistry, 39(12), 3480–3485. https://doi.org/10.1021/bi9923510
  • Mandala, V. S., McKay, M. J., Shcherbakov, A. A., Dregni, A. J., Kolocouris, A., & Hong, M. (2020). Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nature Structural & Molecular Biology, 27(12), 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
  • Memish, Z. A., Perlman, S., Van Kerkhove, M. D., & Zumla, A. (2020). Middle East respiratory syndrome. The Lancet, 395(10229), 1063–1077. https://doi.org/10.1016/S0140-6736(19)33221-0
  • Nagy, Á., Pongor, S., & Győrffy, B. (2021). Different mutations in SARS-CoV-2 associate with severe and mild outcome. International Journal of Antimicrobial Agents, 57(2), 106272. https://doi.org/10.1016/j.ijantimicag.2020.106272
  • Nguyen, T. T., Pathirana, P. N., Nguyen, T., Nguyen, Q. V. H., Bhatti, A., Nguyen, D. C., Nguyen, D. T., Nguyen, N. D., Creighton, D., & Abdelrazek, M. (2021). Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Scientific Reports, 11(1), 3487. https://doi.org/10.1038/s41598-021-83105-3
  • Peck, K. M., & Lauring, A. S. (2018). Complexities of viral mutation rates. Journal of Virology, 92(14), 1–8. https://doi.org/10.1128/JVI.01031-17
  • Peng, Y., Du, N., Lei, Y., Dorje, S., Qi, J., Luo, T., Gao, G. F., & Song, H. (2020). Structures of the SARS ‐CoV‐2 nucleocapsid and their perspectives for drug design. The EMBO Journal, 39(20), 1–12. https://doi.org/10.15252/embj.2020105938
  • Phan, T. (2020). Genetic diversity and evolution of SARS-CoV-2. Infection, Genetics and Evolution, 81, 104260. https://doi.org/10.1016/j.meegid.2020.104260
  • Pickett, B. E., Liu, M., Sadat, E. L., Squires, R. B., Noronha, J. M., He, S., Jen, W., Zaremba, S., Gu, Z., Zhou, L., Larsen, C. N., Bosch, I., Gehrke, L., McGee, M., Klem, E. B., & Scheuermann, R. H. (2013). Metadata-driven comparative analysis tool for sequences (meta-CATS): An automated process for identifying significant sequence variations that correlate with virus attributes. Virology, 447(1–2), 45–51. https://doi.org/10.1016/j.virol.2013.08.021
  • Pickett, B. E., Sadat, E. L., Zhang, Y., Noronha, J. M., Squires, R. B., Hunt, V., Liu, M., Kumar, S., Zaremba, S., Gu, Z., Zhou, L., Larson, C. N., Dietrich, J., Klem, E. B., & Scheuermann, R. H. (2012). ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Research, 40(D1), D593–598. https://doi.org/10.1093/nar/gkr859
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014a). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(W1), W314–319. https://doi.org/10.1093/nar/gku411
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014b). MCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P. Y. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592, 116–121. https://doi.org/10.1038/s41586-020-2895-3
  • Proctor, E. A., & Dokholyan, N. V. (2016). Applications of discrete molecular dynamics in biology and medicine. Current Opinion in Structural Biology, 37, 9–13. https://doi.org/10.1016/j.sbi.2015.11.001
  • Rahman, M. S., Hoque, M. N., Islam, M. R., Islam, I., Mishu, I. D., Rahaman, M. M., Sultana, M., & Hossain, M. A. (2021). Mutational insights into the envelope protein of SARS-CoV-2. Gene Reports, 22, 100997. https://doi.org/10.1016/j.genrep.2020.100997
  • Rahman, M. S., Islam, M. R., Alam, A. S. M. R. U., Islam, I., Hoque, M. N., Akter, S., Rahaman, M. M., Sultana, M., & Hossain, M. A. (2021). Evolutionary dynamics of SARS-CoV-2 nucleocapsid protein and its consequences. Journal of Medical Virology, 93(4), 2177–2119. https://doi.org/10.1002/jmv.26626
  • Ramachandran, S., Kota, P., Ding, F., & Dokholyan, N. V. (2011). Automated minimization of steric clashes in protein structures. Proteins, 79(1), 261–270. https://doi.org/10.1002/prot.22879
  • Rodrigues, C. H. M., Pires, D. E. V., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Saputri, D. S., Li, S., van Eerden, F. J., Rozewicki, J., Xu, Z., Ismanto, H. S., Davila, A., Teraguchi, S., Katoh, K., & Standley, D. M. (2020). Flexible, functional, and familiar: Characteristics of SARS-CoV-2 spike protein evolution. Frontiers in Microbiology, 11(September), 2112–2116. https://doi.org/10.3389/fmicb.2020.02112
  • Sarkar, M., & Saha, S. (2020). Structural insight into the role of novel SARSCoV-2 E protein: A potential target for vaccine development and other therapeutic strategies. PLoS One, 15(8), e0237300–25. https://doi.org/10.1371/journal.pone.0237300
  • Schrödinger LLC. (2010). The PyMOL molecular graphics system. Version 2.3.0.
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Singh, J., Singh, H., Hasnain, S. E., & Rahman, S. A. (2020). Mutational signatures in countries affected by SARS-CoV-2: Implications in host-pathogen interactome. bioRxiv. https://doi.org/10.1101/2020.09.17.301614
  • Singh, S., Ehtesham, N. Z., Rahman, S. A., & Hasnain, S. E. (2021). Structure function investigation of a new VUI-202012/01 SARS-CoV-2 variant. bioRxiv. https://doi.org/10.1101/2021.01.01.425028
  • Tomaszewski, T., DeVries, R. S., Dong, M., Bhatia, G., Norsworthy, M. D., Zheng, X., & Caetano-Anollés, G. (2020). New pathways of mutational change in SARS-CoV-2 proteomes involve regions of intrinsic disorder important for virus replication and release. Evolutionary Bioinformatics Online, 16, 1176934320965149–1176934320965118. https://doi.org/10.1177/1176934320965149
  • Tranchevent, L. C., Capdevila, F. B., Nitsch, D., de Moor, B., de Causmaecker, P., & Moreau, Y. (2011). A guide to web tools to prioritize candidate genes. Briefings in Bioinformatics, 12(1), 22–32. https://doi.org/10.1093/bib/bbq007
  • Verma, D., Jacobs, D. J., & Livesay, D. R. (2012). Changes in lysozyme flexibility upon mutation are frequent, large and long-ranged. PLoS Computational Biology, 8(3), e1002409. https://doi.org/10.1371/journal.pcbi.1002409
  • Volz, E., Hill, V., McCrone, J. T., Price, A., Jorgensen, D., O'Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F. F., Rey, S. M., Nicholls, S. M., Colquhoun, R. M., da Silva Filipe, A., Shepherd, J., Pascall, D. J., Shah, R., Jesudason, N., Li, K., … Connor, T. R. (2021). Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 184(1), 64–75. https://doi.org/10.1016/j.cell.2020.11.020
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, J., Shi, C., Xu, Q., & Yin, H. (2021). SARS-CoV-2 nucleocapsid protein undergoes liquid – liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discovery, 7(1), 3–7. https://doi.org/10.1038/s41421-020-00240-3
  • Wang, R., Hozumi, Y., Yin, C., & Wei, G. W. (2020). Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine. Journal of Chemical Information and Modeling, 60(12), 5853–5865. https://doi.org/10.1021/acs.jcim.0c00501
  • Wieczorek, G., & Zielenkiewicz, P. (2008). DeltaF508 mutation increases conformational flexibility of CFTR protein. Journal of Cystic Fibrosis, 7(4), 295–300. https://doi.org/10.1016/j.jcf.2007.11.008
  • Worth, C. L., Preissner, R., & Blundell, T. L. (2011). SDM - A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Research, 39(suppl), W215–222. https://doi.org/10.1093/nar/gkr363
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. BioRxiv, 1263(March), 1260–1263. https://doi.org/10.1101/2020.02.11.944462
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yamada, Y., Banno, Y., Yoshida, H., Kikuchi, R., Akao, Y., Murate, T., & Nozawa, Y. (2006). Catalytic inactivation of human phospholipase D2 by a naturally occurring Gly901Asp mutation. Archives of Medical Research, 37(6), 696–699. https://doi.org/10.1016/j.arcmed.2006.01.006
  • Yang, Y., Peng, F., Wang, R., Yange, M., Guan, K., Jiang, T., Xu, G., Sun, J., & Chang, C. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. Journal of Autoimmunity, 109, 102434. https://doi.org/10.1016/j.jaut.2020.102434
  • Yao, H., Lu, X., Chen, Q., Xu, K., Chen, Y., Cheng, M., Chen, K., Cheng, L., Weng, T., Shi, D., Liu, F., Wu, Z., Xie, M., Wu, H., Jin, C., Zheng, M., Wu, N., Jiang, C., & Li, L. (2020). Patient-derived SARS-CoV-2 mutations impact viral replication dynamics and infectivity in vitro and with clinical implications in vivo. Cell Discovery, 6(1), 76. https://doi.org/10.1038/s41421-020-00226-1
  • Zhang, L., Jackson, C. B., Mou, H., Ojha, A., Peng, H., Quinlan, B. D., Rangarajan, E. S., Pan, A., Vanderheiden, A., Suthar, M. S., Li, W., Izard, T., Rader, C., Farzan, M., & Choe, H. (2020). SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nature Communications, 11(1), 1–9. https://doi.org/10.1038/s41467-020-19808-4
  • Zhou, H. X., & Pang, X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chemical Reviews, 118(4), 1691–1741. https://doi.org/10.1021/acs.chemrev.7b00305
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zinzula, L., Basquin, J., Bohn, S., Beck, F., Klumpe, S., Pfeifer, G., Nagy, I., Bracher, A., Hartl, F. U., & Baumeister, W. (2021). High-resolution structure and biophysical characterization of the nucleocapsid phosphoprotein dimerization domain from the Covid-19 severe acute respiratory syndrome coronavirus 2. Biochemical and Biophysical Research Communications, 538, 54–62. https://doi.org/10.1016/j.bbrc.2020.09.131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.