377
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel multitarget antitubercular inhibitors against mycobacterial peptidoglycan biosynthetic Mur enzymes by structure-based virtual screening

&
Pages 8185-8196 | Received 23 Dec 2020, Accepted 18 Mar 2021, Published online: 07 Apr 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Anishetty, S., Pulimi, M., & Pennathur, G. (2005). Potential drug targets in Mycobacterium tuberculosis through metabolic pathway analysis. Computational Biology and Chemistry, 29(5), 368–378. https://doi.org/10.1016/j.compbiolchem.2005.07.001
  • Anuradha, C. M., Mulakayala, C., Babajan, B., Naveen, M., Rajasekhar, C., & Kumar, C. S. (2010). Probing ligand binding modes of Mycobacterium tuberculosis MurC ligase by molecular modeling, dynamics simulation and docking. Journal of Molecular Modeling, 16(1), 77–85. https://doi.org/10.1007/s00894-009-0521-2
  • Arvind, A., Kumar, V., Saravanan, P., & Mohan, C. G. (2012). Homology modeling, molecular dynamics and inhibitor binding study on MurD ligase of Mycobacterium tuberculosis. Interdisciplinary Sciences, Computational Life Sciences, 4(3), 223–238. https://doi.org/10.1007/s12539-012-0133-x
  • Barreteau, H., Kovac, A., Boniface, A., Sova, M., Gobec, S., & Blanot, D. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiology Reviews, 32(2), 168–207. https://doi.org/10.1111/j.1574-6976.2008.00104.x
  • Basavannacharya, C., Moody, P. R., Munshi, T., Cronin, N., Keep, N. H., & Bhakta, S. (2010). Essential residues for the enzyme activity of ATP-dependent MurE ligase from Mycobacterium tuberculosis. Protein & Cell, 1(11), 1011–1022. https://doi.org/10.1007/s13238-010-0132-9
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Bertrand, J. A., Auger, G., Martin, L., Fanchon, E., Blanot, D., Le Beller, D., van Heijenoort, J., & Dideberg, O. (1999). Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. Journal of Molecular Biology, 289(3), 579–590. https://doi.org/10.1006/jmbi.1999.2800
  • Binkowski, T. A., Naghibzadeh, S., & Liang, J. (2003). CASTp: Computed Atlas of Surface Topography of proteins. Nucleic Acids Research, 31(13), 3352–3355. https://doi.org/10.1093/nar/gkg512
  • Chiu, S. W., Pandit, S. A., Scott, H. L., & Jakobsson, E. (2009). An improved united atom force field for simulation of mixed lipid bilayers. The Journal of Physical Chemistry, B, 113(9), 2748–2763. https://doi.org/10.1021/jp807056c
  • Danishuddin, M., Khan, A., Faheem, M., Kalaiarasan, P., Hassan Baig, M., Subbarao, N., & Khan, A. U. (2014). Structure-based screening of inhibitors against KPC-2: Designing potential drug candidates against multidrug-resistant bacteria. Journal of Biomolecular Structure & Dynamics, 32(5), 741–750. https://doi.org/10.1080/07391102.2013.789988
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • El Zoeiby, A., Sanschagrin, F., & Levesque, R. C. (2003). Structure and function of the Mur enzymes: Development of novel inhibitors. Molecular Microbiology, 47(1), 1–12. https://doi.org/10.1046/j.1365-2958.2003.03289.x
  • Eniyan, K., Dharavath, S., Vijayan, R., Bajpai, U., & Gourinath, S. (2018). Crystal structure of UDP-N-acetylglucosamine-enolpyruvate reductase (MurB) from Mycobacterium tuberculosis. Biochimica et Biophysica Acta. Proteins and Proteomics, 1866(3), 397–406. https://doi.org/10.1016/j.bbapap.2017.11.013
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fakhar, Z., Naiker, S., Alves, C. N., Govender, T., Maguire, G. E., Lameira, J., Lamichhane, G., Kruger, H. G., & Honarparvar, B. (2016). A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. Journal of Biomolecular Structure and Dynamics, 34(11), 2399–2417. https://doi.org/10.1080/07391102.2015.1117397
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Khan, A. U., Ali, A., Danishuddin, Srivastava, G., & Sharma, A. (2017). Potential inhibitors designed against NDM-1 type metallo-β-lactamases: An attempt to enhance efficacies of antibiotics against multi-drug-resistant bacteria. Scientific Reports, 7(1), 9207. https://doi.org/10.1038/s41598-017-09588-1
  • Kotnik, M., Humljan, J., Contreras-Martel, C., Oblak, M., Kristan, K., Hervé, M., Blanot, D., Urleb, U., Gobec, S., Dessen, A., & Solmajer, T. (2007). Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. Journal of Molecular Biology, 370(1), 107–115. https://doi.org/10.1016/j.jmb.2007.04.048
  • Kumar, V., Saravanan, P., Arvind, A., & Mohan, C. G. (2011). Identification of hotspot regions of MurB oxidoreductase enzyme using homology modeling, molecular dynamics and molecular docking techniques. Journal of Molecular Modeling, 17(5), 939–953. https://doi.org/10.1007/s00894-010-0788-3
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumari, M., & Subbarao, N. (2019). Virtual screening to identify novel potential inhibitors for Glutamine synthetase of Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 38(17), 5062–5080.
  • Liao, K. H., Chen, K., Lee, W. Y., Sun, M. F., Lee, C. C., & Chen, C. C. (2014). Ligand-based and structure-based investigation for Alzheimer's disease from Traditional Chinese Medicine. Evidence-Based Complementary and Alternative Medicine, 2014. Article ID 364819.
  • Lipman, D. J., & Pearson, W. R. (1985). Rapid and sensitive protein similarity searches. Science (New York, N.Y.), 227(4693), 1435–1441. https://doi.org/10.1126/science.2983426
  • Moraes, G. L., Gomes, G. C., Monteiro de Sousa, P. R., Alves, C. N., Govender, T., Kruger, H. G., Maguire, G. E., Lamichhane, G., & Lameira, J. (2015). Structural and functional features of enzymes of Mycobacterium tuberculosis peptidoglycan biosynthesis as targets for drug development. Tuberculosis (Edinburgh, Scotland), 95(2), 95–111. https://doi.org/10.1016/j.tube.2015.01.006
  • Mount, D. W. (2007). Steps used by the BLAST algorithm. CSH Protocols, 2007. https://doi.org/10.1101/pdb.ip41
  • Sadowski, J., Gasteiger, J., & Klebe, G. (1994). Comparison of automatic three-dimensional model builders using 639 X-ray structures. Journal of Chemical Information and Modeling, 34, 4.
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, D60, 1355–1363.
  • Smith, C. A. (2006). Structure, function and dynamics in the Mur family of bacterial cell wall ligases. Journal of Molecular Biology, 362(4), 640–655. https://doi.org/10.1016/j.jmb.2006.07.066
  • Turner, P. J. (2005). XMGRACE, version 5.1. 25. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Umubyeyi, A., Rigouts, L., Shamputa, I. C., Dediste, A., Struelens, M., & Portaels, F. (2008). Low levels of second-line drug resistance among multidrug-resistant Mycobacterium tuberculosis isolates from Rwanda. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 12(2), 152–156. https://doi.org/10.1016/j.ijid.2007.05.003
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, R., Lai, L., & Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16(1), 11–26. https://doi.org/10.1023/a:1016357811882
  • Xu, L., Wu, D., Liu, L., Zheng, Q., Song, Y., Ye, L., Sha, S., Kang, J., Xin, Y., & Ma, Y. (2014). Characterization of mycobacterial UDP-N-acetylglucosamine enolpyruvyle transferase (MurA). Research in Microbiology, 165(2), 91–101. https://doi.org/10.1016/j.resmic.2014.01.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.