270
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis of new urease enzyme inhibitors as antiulcer drug and computational study

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , & show all
Pages 8232-8247 | Received 14 Dec 2020, Accepted 23 Mar 2021, Published online: 16 Apr 2021

References

  • Ali, B., Khan, K. M., Salar, U., Hussain, S., Ashraf, M., Riaz, M., Wadood, A., Taha, M., & Perveen, S. (2018). 1-[(4′-Chlorophenyl) carbonyl-4-(aryl) thiosemicarbazide derivatives as potent urease inhibitors: Synthesis, in vitro and in silico studies. Bioorganic Chemistry, 79, 363–371. https://doi.org/10.1016/j.bioorg.2018.05.017
  • Ali, S., Ali, N., Dar, B. A., Pradhan, V., & Farooqui, M. (2013). Chemistry and biology of indoles and indazoles: A mini-review. Mini Reviews in Medicinal Chemistry, 13(12), 1792–1800. https://doi.org/10.2174/1389557511313120009
  • Alomari, M., Taha, M., Imran, S., Jamil, W., Selvaraj, M., Uddin, N., & Rahim, F. (2019). Design, synthesis, in vitro evaluation, molecular docking and ADME properties studies of hybrid bis-coumarin with thiadiazole as a new inhibitor of Urease. Bioorganic Chemistry, 92, 103235. https://doi.org/10.1016/j.bioorg.2019.103235
  • AmirJaved, M. S., & Kumar, H. (2008). Synthesis and biological evaluation of some 4-(1H-indol-3-yl)-6-phenyl-1,2,3,4-tetrahydropyrimidin-2-ones/thiones as potent anti-inflammatory agents. Acta Pharmaceutica, 58(4), 467–477. https://doi.org/10.2478/v10007-008-0028-x
  • Aslam, M. A. S., Mahmood, S. U., Shahid, M., Saeed, A., & Iqbal, J. (2011). Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors. European Journal of Medicinal Chemistry, 46(11), 5473–5479. https://doi.org/10.1016/j.ejmech.2011.09.009
  • Battaglia, S., Boldrini, E., Da Settimo, F., Dondio, G., La Motta, C., Marini, A. M., & Primofiore, G. (1999). Indole amide derivatives: Synthesis, structure–activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. European Journal of Medicinal Chemistry, 34(2), 93–105. https://doi.org/10.1016/S0223-5234(99)80044-0
  • Bouchikhi, F., Rossignol, E., Sancelme, M., Aboab, B., Anizon, F., Fabbro, D., Prudhomme, M., & Moreau, P. (2008). Synthesis and biological evaluation of diversely substituted indolin-2-ones. European Journal of Medicinal Chemistry, 43(11), 2316–2322. https://doi.org/10.1016/j.ejmech.2008.01.010
  • Chen, I., Safe, S., & Bjeldanes, L. (1996). Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochemical Pharmacology, 51(8), 1069–1076. https://doi.org/10.1016/0006-2952(96)00060-3
  • Choppara, P., Bethu, M. S., Vara Prasad, Y., Venkateswara Rao, J., Uday Ranjan, T. J., Siva Prasad, G. V., Doradla, R., & Murthy, Y. L. N. (2019). Synthesis, characterization and cytotoxic investigations of novel bis (indole) analogues besides antimicrobial study. Arabian Journal of Chemistry, 12(8), 2721–2731. https://doi.org/10.1016/j.arabjc.2015.05.015
  • de Fátima, Â., de Paula Pereira, C., Olímpio, C. R., de Freitas Oliveira, B. G., Franco, L. L., & da Silva, P. H. C. (2018). Schiff bases and their metal complexes as urease inhibitors – A brief review. Journal of Advanced Research, 13, 113–126. https://doi.org/10.1016/j.jare.2018.03.007
  • de Oliveira Moraes, A. D. T., de Miranda, M. D. S., Jacob, Í. T. T., da Cruz Amorim, C. A., de Moura, R. O., da Silva, S. Â. S., Soares, M. B. P., de Almeida, S. M. V., de Lima Souza, T. R. C., de Oliveira, J. F., da Silva, T. G., de Melo, C. M. L., Moreira, D. R. M., & de Lima, M. d. C. A. (2018). Synthesis, in vitro and in vivo biological evaluation, COX-1/2 inhibition and molecular docking study of indole-N-acylhydrazone derivatives. Bioorganic & Medicinal Chemistry 26: 5388–5396.
  • Dharmendra, K., Narendra, K., Tarun, S., & Singh, C. P. (2010). Synthesis of pharmacologically active 2- phenyl sulpha/substituted indoles. International Journal of Engineering, Science and Technology, 2(7), 2553–2557.
  • Douglass, F., Taber, K., & Pavan, T. J. (2011). Indole synthesis: A review and proposed classification. Tetrahedron, 67(38), 7195–7210. https://doi.org/10.1016/j.tet.2011.06.040
  • Gribble, G. W. (2000). Recent developments in indole ring synthesis-methodology and applications. Journal of the Chemical Society, Perkin Transactions 1, 1(7), 1045–1075. https://doi.org/10.1039/a909834h
  • Guerra, A. S. H. d. S., Malta, D. J. d. N., Laranjeira, L. P. M., Maia, M. B. S., Colaço, N. C., de Lima, M. d. C. A., Galdino, S. L., Pitta, I. d. R., & Gonçalves-Silva, T. (2011). Anti-inflammatory and antinociceptive activities of indole-imidazolidine derivatives. International Immunopharmacology, 11(11), 1816–1822. https://doi.org/10.1016/j.intimp.2011.07.010
  • Hanna, M. L., Tarasow, T. M., & Perkins, J. (2007). Mechanistic differences between in vitro assays for hydrazone-based small molecule inhibitors of anthrax lethal factor. Bioorganic Chemistry, 35(1), 50–58. https://doi.org/10.1016/j.bioorg.2006.07.004
  • Hiari, Y. M., Qaisi, A. M., Abadelah, M., & Voelter, M. W. (2006). Synthesis and antibacterial activity of some substituted 3-(Aryl)- and 3-(heteroaryl)indoles. Monatshefte für Chemie - Chemical Monthly, 137(2), 243–248. https://doi.org/10.1007/s00706-005-0424-6
  • Ju, Z., Su, M., Hong, J., La Kim, E., Moon, H. R., Chung, H. Y., Kim, S., & Jung, J. H. (2019). Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. European Journal of Medicinal Chemistry, 180, 86–98. https://doi.org/10.1016/j.ejmech.2019.07.016
  • Karadeniz, A., Kaya, B., Savaş, B., & Topcuoğlu, Ş. F. (2011). Effects of two plant growth regulators, indole-3-acetic acid and β-naphthoxyacetic acid, on genotoxicity in Drosophila SMART assay and on proliferation and viability of HEK293 cells from the perspective of carcinogenesis. Toxicology and Industrial Health, 27(9), 840–848. https://doi.org/10.1177/0748233711399314
  • Kassab, A. E., & Hassan, R. A. (2018). Novel benzotriazole N-acylarylhydrazone hybrids: Design, synthesis, anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis and FAK inhibition. Bioorganic Chemistry, 80, 531–544. https://doi.org/10.1016/j.bioorg.2018.07.008
  • Khan, K., Naz, M. F., Taha, M., Khan, Perveen, A. S., Choudhary, M., & Voelter, I. W. (2014). Synthesis and in vitro urease inhibitory activity of N,N'-disubstituted thioureas. European Journal of Medicinal Chemistry, 74, 314–323. https://doi.org/10.1016/j.ejmech.2014.01.001
  • Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9–21. https://doi.org/10.1016/j.molcatb.2009.01.003
  • Kwon-Chung, K. J., Fraser, J. A., Doering, T. L., Wang, Z. A., Janbon, G., Idnurm, A., & Bahn, Y. S. (2014). Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harbor Perspectives in Medicine, 4(7), a019760. https://doi.org/10.1101/cshperspect.a019760
  • Li, X., & Mobley, H. L. (2002). Vaccines for Proteus mirabilis in urinary tract infection. International Journal of Antimicrobial Agents, 19(6), 461–465. https://doi.org/10.1016/S0924-8579(02)00102-4
  • Liu, B., Li, R., Li, Y., Li, S., Yu, J., Zhao, B., Liao, A., Wang, Y., Wang, Z., Lu, A., Liu, Y., & Wang, Q. (2019). Discovery of pimprinine alkaloids as novel agents against a plant virus. Journal of Agricultural and Food Chemistry, 67(7), 1795–1806. https://doi.org/10.1021/acs.jafc.8b06175
  • Lucas, J., Menschen, A., Lottspeich, F., Voegeli, U., & Boiler, T. (1985). Amino-terminal sequence of ethylene-induced bean leaf chitinase reveals similarities to sugar-binding domains of wheat germ agglutinin. FEBS Letters, 193(2), 208–210. https://doi.org/10.1016/0014-5793(85)80152-6
  • Mirfazli, S. S., Khoshneviszadeh, M., Jeiroudi, M., Foroumadi, A., Kobarfard, F., & Shafiee, A. (2016). Design, synthesis and QSAR study of arylidene indoles as anti-platelet aggregation inhibitors. Medicinal Chemistry Research, 25(1), 1–18. https://doi.org/10.1007/s00044-015-1440-7
  • Mobley, H. (1996). The role of Helicobacter pylori urease in the pathogenesis of gastritis and peptic ulceration. Alimentary Pharmacology & Therapeutics, 10(Sup1), 57–64. https://doi.org/10.1046/j.1365-2036.1996.22164006.x
  • Mobley, H., Island, M. D., & Hausinger, R. P. (1995). Molecular biology of microbial ureases. Microbiological Reviews, 59(3), 451–480. https://doi.org/10.1128/MMBR.59.3.451-480.1995
  • Naureen, S., Chaudhry, F., Asif, N., Munawar, M. A., Ashraf, M., Nasim, F. H., Arshad, H., & Khan, M. A. (2015). Discovery of indole-based tetraarylimidazoles as potent inhibitors of urease with low antilipoxygenase activity. European Journal of Medicinal Chemistry, 102, 464–470. https://doi.org/10.1016/j.ejmech.2015.08.011
  • Odake, S., Morikawa, T., Tsuchiya, M., Imamura, L., & Kobashi, K. (1994). Inhibition of Helicobacter pylori urease activity by hydroxamic acid derivatives. Biological & Pharmaceutical Bulletin, 17(10), 1329–1332. https://doi.org/10.1248/bpb.17.1329
  • Olivera-Severo, D., Wassermann, G. E., & Carlini, C. R. (2006). Ureases display biological effects independent of enzymatic activity: Is there a connection to diseases caused by urease-producing bacteria?. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas, 39(7), 851–861. https://doi.org/10.1590/s0100-879x2006000700002
  • Omar, F. A., Mahfouz, N. M., & Rahman, M. A. (1996). Design, synthesis and anti-inflammatory activity of some 1,3,4-oxadiazole derivatives. European Journal of Medicinal Chemistry, 31(10), 819–825. https://doi.org/10.1016/0223-5234(96)83976-6
  • Pandeya, N., Yogeeswari, P., Ram, D., & Nath, S. G. (1998). Synthesis and antimicrobial activity of N-Mannich bases of 3-[N'-sulphadoximino] isatin and its methyl derivative. Bollettino Chimico Farmaceutico, 137(8), 321–324.
  • ParkImamura, J. L., & Kobashi, K. (1996). Kinetic studies of Helicobacter pylori urease inhibition by a novel proton pump inhibitor, rabeprazole. Biological & Pharmaceutical Bulletin, 19(2), 182–187. https://doi.org/10.1248/bpb.19.182
  • Poeggeler, B., Reiter, R. J., Tan, D. X., Chen, L. D., & Manchester, L. C. (1993). Melatonin, hydroxyl radical-mediated oxidative damage, and aging: A hypothesis . Journal of Pineal Research, 14(4), 151–168. https://doi.org/10.1111/j.1600-079x.1993.tb00498.x
  • Przheval'skii, N. M., Magedov, I. V., & Drozd, V. N. (1997). New derivatives of indole. Synthesis of s-(indolyl-3) diethyl dithiocarbamates. Chemistry of Heterocyclic Compounds, 33(12), 1475–1476. https://doi.org/10.1007/BF02291655
  • Saify, Z. S., Kamil, A., Akhtar, S., Taha, M., Khan, A., Khan, K. M., Jahan, S., Rahim, F., Perveen, S., & Choudhary, M. I. (2014). 2-(2′-Pyridyl) benzimidazole derivatives and their urease inhibitory activity. Medicinal Chemistry Research, 23(10), 4447–4454. https://doi.org/10.1007/s00044-014-1015-z
  • Schmidt, S., Preu, L., Lemcke, T., Totzke, F., Schächtele, C., Kubbutat, M. H., & Kunick, C. (2011). Dual IGF-1R/SRC inhibitors based on a N'-aroyl-2-(1H-indol-3-yl)-2-oxoacetohydrazide structure. European Journal of Medicinal Chemistry, 46(7), 2759–2769. https://doi.org/10.1016/j.ejmech.2011.03.065
  • Seraj, F., Kanwal, Khan, K. M., Khan, A., Ali, M., Khalil, R., Ul-Haq, Z., Hameed, S., Taha, M., Salar, U., & Perveen, S. (2021). Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives. Molecular Diversity, 25(1), 143–157. https://doi.org/10.1007/s11030-019-10032-x 31965436
  • Sharma, V., Bhatia, P., Alam, O., Naim, M. J., Nawaz, F., Sheikh, A. A., & Jha, M. (2019). Recent advancement in the discovery and development of cox-2 inhibitors: Insight into biological activities and sar studies (2008-2019)). Bioorganic Chemistry, 89(2019), 103007. https://doi.org/10.1016/j.bioorg.2019.103007
  • Siddiqui, N., Alam, M., & Ahsan, W. (2008). Synthesis, anticonvulsant and toxicity evaluation of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine carbothioamides and their related heterocyclic derivatives. Acta Pharmaceutica, 58(4), 445–454. https://doi.org/10.2478/v10007-008-0025-0
  • SuzenBuyukbingol, S. E. (1998). Evaluation of anti-HIV activity of 5-(2-phenyl-3′-indolal)-2-thiohydantoin. II Farmaco, 53(7), 525–527. https://doi.org/10.1016/S0014-827X(98)00053-6
  • Taha, M., & Wadood, A. (2018). Synthesis and molecular docking study of piperazine derivatives as potent urease inhibitors. Bioorganic Chemistry, 78, 411–417. https://doi.org/10.1016/j.bioorg.2018.04.007
  • Taha, M., Aldhamin, E. A. J., Almandil, N. B., Anouar, E. H., Uddin, N., Alomari, M., Rahim, F., Adalat, B., Ibrahim, M., Nawaz, F., Iqbal, N., Alghanem, B., Altolayyan, A., & Khan, K. M. (2020). Synthesis of indole based acetohydrazide analogs: Their in vitro and in silico thymidine phosphorylase studies. Bioorganic Chemistry, 98, 103745. https://doi.org/10.1016/j.bioorg.2020.103745
  • Taha, M., Ismail, N. H., Baharudin, M. S., Lalani, S., Mehboob, S., Khan, K. M., Yousuf, S., Siddiqui, S., Rahim, F., & Choudhary, M. I. (2015). Synthesis crystal structure of 2-methoxybenzoylhydrazones and evaluation of their α-glucosidase and urease inhibition potential. Medicinal Chemistry Research, 24(3), 1310–1324. https://doi.org/10.1007/s00044-014-1213-8
  • Taha, M., Ismail, N. H., Imran, S., Wadood, A., Rahim, F., & Riaz, M. (2015). Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies. Bioorganic & Medicinal Chemistry, 23(22), 7211–7218. https://doi.org/10.1016/j.bmc.2015.10.017
  • Taha, M., Shah, S. A. A., Khan, A., Arshad, F., Ismail, N. H., Afifi, M., Imran, S., & Choudhary, M. I. (2019). Synthesis of 3, 4, 5-trihydroxybenzohydrazone and evaluation of their urease inhibition potential. Arabian Journal of Chemistry., 12(8), 2973–2982. https://doi.org/10.1016/j.arabjc.2015.06.036
  • Tantak, M. P., Klingler, L., Arun, V., Kumar, A., Sadana, R., & Kumar, D. (2017). Design and synthesis of bis(indolyl)ketohydrazide-hydrazones: Identification of potent and selective novel tubulin inhibitors. European Journal of Medicinal Chemistry, 136, 184–194. https://doi.org/10.1016/j.ejmech.2017.04.078
  • Van Order, R. B., & Lindwall, H. G. (1942). Indole. Chemical Reviews, 30(1), 69–96. https://doi.org/10.1021/cr60095a004
  • Wahid, S., Jahangir, S., Versiani, M. A., Khan, K. M., Salar, U., Ashraf, Farzand, M. U., Wadood, A., Taha, M., & Perveen, S. (2020). Atenolol thiourea hybrid as potent urease inhibitors: Design, biology-oriented drug synthesis, inhibitory activity screening, and molecular docking studies. Bioorganic Chemistry, 94, 103359. https://doi.org/10.1016/j.bioorg.2019.103359
  • Wani, T. A., Bakheit, A. H., Zargar, S., Bhat, M. A., & Al-Majed, A. A. (2019). Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin. Bioorganic Chemistry, 89, 103010. https://doi.org/10.1016/j.bioorg.2019.103010
  • Zaman, K., Rahim, F., Taha, M., Ullah, H., Wadood, A., Nawaz, M., Khan, F., Wahab, Z., Shah, S. A., Rehman, A. U., Kawde, A. N., & Gollapalli, M. (2019). Synthesis, in vitro urease inhibitory potential and molecular docking study of benzimidazole analogues. Bioorganic Chemistry, 89, 103024. https://doi.org/10.1016/j.bioorg.2019.103024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.