240
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potential inhibitors of Schistosoma mansoni purine nucleoside phosphorylase from neolignan compounds using molecular modelling approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 8248-8260 | Received 13 Jan 2021, Accepted 24 Mar 2021, Published online: 08 Apr 2021

References

  • Adekiya, T. A., Aruleba, R. T., Klein, A., & Fadaka, A. O. (2020). Journal of Biomolecular Structure and Dynamics, 1-9, 1850363. https://doi.org/10.1080/07391102.2020.1850363
  • Alves, C. N., Macedo, L. G. M. d., Honório, K. M., Camargo, A. J., Santos, L. S., Jardim, I. N., Barata, L. E. S., & Silva, A. B. F. D. (2002). A structure-activity relationship (SAR) study of neolignan compounds with anti-schistosomiasis activity. Journal of the Brazilian Chemical Society, 13(3), 300–307. https://doi.org/10.1590/S0103-50532002000300003
  • Ban, T., Ohue, M., & Akiyama, Y. (2018). Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Computational Biology and Chemistry, 73, 139–146. https://doi.org/10.1016/j.compbiolchem.2018.02.008
  • Barata, L. E., Santos, L. S., Ferri, P. H., Phillipson, J. D., Paine, A., & Croft, S. L. (2000). Anti-leishmanial activity of neolignans from Virola species and synthetic analogues. Phytochemistry, 55(6), 589–595. https://doi.org/10.1016/S0031-9422(00)00240-5
  • Bergquist, R., Utzinger, J., & Keiser, J. (2017). Controlling schistosomiasis with praziquantel: How much longer without a viable alternative? Infectious Diseases of Poverty, 6(1), 74–74. https://doi.org/10.1186/s40249-017-0286-2
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bzowska, A., Kulikowska, E., & Shugar, D. (2000). Purine nucleoside phosphorylases: Properties, functions, and clinical aspects. Pharmacology & Therapeutics, 88(3), 349–425. https://doi.org/10.1016/S0163-7258(00)00097-8
  • Camargo, P. G., Bortoleti, B. T. d S., Fabris, M., Gonçalves, M. D., Tomiotto-Pellissier, F., Costa, I. N., Conchon-Costa, I., Lima, C. H. d S., Pavanelli, W. R., Bispo, M. d L. F., & Macedo, F., Jr. (2020). Journal of Biomolecular Structure and Dynamics, 1–10, 1845979. https://doi.org/10.1080/07391102.2020.1845979, 1–10.
  • Castilho, M. S., Postigo, M. P., Pereira, H. M., Oliva, G., & Andricopulo, A. D. (2010). Structural basis for selective inhibition of purine nucleoside phosphorylase from Schistosoma mansoni: Kinetic and structural studies. Bioorganic & Medicinal Chemistry, 18(4), 1421–1427. https://doi.org/10.1016/j.bmc.2010.01.022
  • Chaudhary, N., & Aparoy, P. (2017). Deciphering the mechanism behind the varied binding activities of COXIBs through molecular dynamic simulations, MM-PBSA binding energy calculations and per-residue energy decomposition studies. Journal of Biomolecular Structure & Dynamics, 35(4), 868–882. https://doi.org/10.1080/07391102.2016.1165736
  • Cioli, D., Pica-Mattoccia, L., Basso, A., & Guidi, A. (2014). Schistosomiasis control: Praziquantel forever? Molecular and Biochemical Parasitology, 195(1), 23–29. https://doi.org/10.1016/j.molbiopara.2014.06.002
  • Coeli, R., Baba, E. H., Araujo, N., Coelho, P. M. Z., & Oliveira, G. (2013). Praziquantel treatment decreases Schistosoma mansoni genetic diversity in experimental infections. PLoS Neglected Tropical Diseases, 7(12), e2596. https://doi.org/10.1371/journal.pntd.0002596
  • Connolly, M. L. (1993). The molecular surface package. Journal of Molecular Graphics, 11(2), 139–141. https://doi.org/10.1016/0263-7855(93)87010-3
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Azevedo, W. F., Canduri, F., dos Santos, D. M., Silva, R. G., de Oliveira, J. S., de Carvalho, L. P. S., Basso, L. A., Mendes, M. A., Palma, M. S., & Santos, D. S. (2003). Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. Biochemical and Biophysical Research Communications, 308(3), 545–552. https://doi.org/10.1016/S0006-291X(03)01431-1
  • de Castro Oliveira, L. G., Brito, L. M., de Moraes Alves, M. M., Amorim, L. V., Sobrinho-Júnior, E. P. C., de Carvalho, C. E. S., da Franca Rodrigues, K. A., Arcanjo, D. D. R., das Graças Lopes Citó, A. M., & de Amorim Carvalho, F. A. (2017). In vitro effects of the neolignan 2,3-dihydrobenzofuran against leishmania amazonensis. Basic & Clinical Pharmacology & Toxicology, 120(1), 52–58. https://doi.org/10.1111/bcpt.12639
  • de Moraes, M. C., Cardoso, C. L., & Cass, Q. B. (2013). Immobilized purine nucleoside phosphorylase from Schistosoma mansoni for specific inhibition studies. Analytical and Bioanalytical Chemistry, 405(14), 4871–4878. https://doi.org/10.1007/s00216-013-6872-7
  • Dias, H. J., Patrocínio, A. B., Pagotti, M. C., Fukui, M. J., Rodrigues, V., Magalhães, L. G., & Crotti, A. E. M. (2018). Schistosomicidal activity of dihydrobenzofuran neolignans. Chemistry & Biodiversity, 15(7), e1800134. https://doi.org/10.1002/cbdv.201800134
  • D'Muniz Pereira, H., Oliva, G., & Garratt, R. C. (2011). Purine nucleoside phosphorylase from Schistosoma mansoni in complex with ribose-1-phosphate. Journal of Synchrotron Radiation, 18(1), 62–65. https://doi.org/10.1107/S0909049510027718
  • eMolecules. (2014). https://www.emoleucles.com. Retrieved March 2014.
  • Ferrin, T. E., Huang, C. C., Jarvis, L. E., & Langridge, R. (1988). The MIDAS display system. Journal of Molecular Graphics, 6(1), 13–27. https://doi.org/10.1016/0263-7855(88)80054-7
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., … Pople, J. A. (2003). Gaussian 03. Gaussian, Inc.
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213–222. https://doi.org/10.1007/BF00533485
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Inobaya, M. T., Chau, T. N., Ng, S.-K., MacDougall, C., Olveda, R. M., Tallo, V. L., Landicho, J. M., Malacad, C. M., Aligato, M. F., Guevarra, J. R., & Ross, A. G. (2018). Mass drug administration and the sustainable control of schistosomiasis: Community health workers are vital for global elimination efforts. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 66, 14–21. https://doi.org/10.1016/j.ijid.2017.10.023
  • Irwin, J. J., Sterling, T., Mysinger, M. M., Bolstad, E. S., & Coleman, R. G. (2012). ZINC: A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52(7), 1757–1768. https://doi.org/10.1021/ci3001277
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. Journal of Chemical Physics., 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalckar, H. M. (1947). Differential spectrophotometry of purine compounds by means of specific enzymes. Journal of Biological Chemistry, 167(2), 429–443. https://doi.org/10.1016/S0021-9258(17)30997-3
  • Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 161(2), 269–288. https://doi.org/10.1016/0022-2836(82)90153-X
  • Lang, P. T., Brozell, S. R., Mukherjee, S., Pettersen, E. F., Meng, E. C., Thomas, V., Rizzo, R. C., Case, D. A., James, T. L., & Kuntz, I. D. (2009). DOCK 6: Combining techniques to model RNA-small molecule complexes. RNA (New York, N.Y.), 15(6), 1219–1230. https://doi.org/10.1261/rna.1563609
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Loncharich, R. J., Brooks, B. R., & Pastor, R. W. (1992). Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide. Biopolymers, 32(5), 523–535. https://doi.org/10.1002/bip.360320508
  • M., Aveniente, E. F., Pinto, L. S., Santos, B., Rossi-Bergmann, L. E. S., & Barata, B. (2007). Structure-activity relationship of antileishmanials neolignan analogues. Bioorganic & Medicinal Chemistry, 15(23), 7337–7343. https://doi.org/10.1016/j.bmc.2007.08.016
  • McManus, D. P., Dunne, D. W., Sacko, M., Utzinger, J., Vennervald, B. J., & Zhou, X.-N. (2018). Schistosomiasis. Nature Reviews. Disease Primers, 4(1), 13. https://doi.org/10.1038/s41572-018-0013-8
  • Meng, E. C., Shoichet, B. K., & Kuntz, I. D. (1992). Automated docking with grid-based energy evaluation. Journal of Computational Chemistry, 13(4), 505–524. https://doi.org/10.1002/jcc.540130412
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: an efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mollica, A., Zengin, G., Durdagi, S., Salmas, R. E., Macedonio, G., Stefanucci, A., Dimmito, M. P., & Novellino, E. (2019). Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. Journal of Biomolecular Structure & Dynamics, 37(3), 726–740. https://doi.org/10.1080/07391102.2018.1439403
  • Molyneux, D. H., Dean, L., Adekeye, O., Stothard, J. R., & Theobald, S. (2018). The changing global landscape of health and disease: Addressing challenges and opportunities for sustaining progress towards control and elimination of neglected tropical diseases (NTDs). Parasitology, 145(13), 1647–1654. https://doi.org/10.1017/S0031182018000069
  • Moonrin, N., Songtawee, N., Rattanabunyong, S., Chunsrivirot, S., Mokmak, W., Tongsima, S., & Choowongkomon, K. (2015). Understanding the molecular basis of EGFR kinase domain/MIG-6 peptide recognition complex using computational analyses. BMC Bioinformatics, 16, 103–103. https://doi.org/10.1186/s12859-015-0528-x
  • Moraes, J. D. (2015). Natural products with antischistosomal activity. Future Medicinal Chemistry, 7, 801–820.
  • Neudert, G., & Klebe, G. (2011). fconv: Format conversion, manipulation and feature computation of molecular data. Bioinformatics (Oxford, England), 27(7), 1021–1022. https://doi.org/10.1093/bioinformatics/btr055
  • Niu, Y., Shi, D., Li, L., Guo, J., Liu, H., & Yao, X. (2017). Revealing inhibition difference between PFI-2 enantiomers against SETD7 by molecular dynamics simulations, binding free energy calculations and unbinding pathway analysis. Scientific Reports, 7, 46547–46547. https://doi.org/10.1038/srep46547
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. https://doi.org/10.1021/jp994072s
  • Pereira, A. C., Magalhães, L. G., Gonçalves, U. O., Luz, P. P., Moraes, A. C. G., Rodrigues, V., da Matta Guedes, P. M., da Silva Filho, A. A., Cunha, W. R., Bastos, J. K., Nanayakkara, N. P. D., & e Silva, M. L. A. (2011). Schistosomicidal and trypanocidal structure-activity relationships for (±)-licarin A and its (-)- and (+)-enantiomers. Phytochemistry, 72(11–12), 1424–1430. https://doi.org/10.1016/j.phytochem.2011.04.007
  • Pereira, G. A. N., Souza, G. C., Santos, L. S., Barata, L. E. S., Meneses, C. C. F., Krettli, A. U., Daniel-Ribeiro, C. T., & Alves, C. N. (2017). Synthesis, antimalarial activity in vitro, and docking studies of novel neolignan derivatives. Chemical Biology & Drug Design, 90(3), 464–472. https://doi.org/10.1111/cbdd.12968
  • Pereira, H. D. M., Franco, G. R., Cleasby, A., & Garratt, R. C. (2005). Structures for the potential drug target purine nucleoside phosphorylase from Schistosoma mansoni causal agent of schistosomiasis. Journal of Molecular Biology, 353(3), 584–599. https://doi.org/10.1016/j.jmb.2005.08.045
  • Pereira, H. M., Berdini, V., Ferri, M. R., Cleasby, A., & Garratt, R. C. (2010). Crystal structure of Schistosoma purine nucleoside phosphorylase complexed with a novel monocyclic inhibitor. Acta Tropica, 114(2), 97–102. https://doi.org/10.1016/j.actatropica.2010.01.010
  • Pereira, H. M., Cleasby, A., Pena, S. D. J., Franco, G. R., & Garratt, R. C. (2003). Cloning, expression and preliminary crystallographic studies of the potential drug target purine nucleoside phosphorylase from Schistosoma mansoni. Acta Crystallographica. Section D, Biological Crystallography, 59(Pt 6), 1096–1099. https://doi.org/10.1107/s090744490300773x
  • Pereira, H. M., Rezende, M. M., Castilho, M. S., Oliva, G., & Garratt, R. C. (2010). Adenosine binding to low-molecular-weight purine nucleoside phosphorylase: The structural basis for recognition based on its complex with the enzyme from Schistosoma mansoni. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 73–79. https://doi.org/10.1107/S0907444909045715
  • Perricone, U., Gulotta, M. R., Lombino, J., Parrino, B., Cascioferro, S., Diana, P., Cirrincione, G., & Padova, A. (2018). An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. MedChemComm, 9(6), 920–936. https://doi.org/10.1039/c8md00166a
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinheiro, A. S., Duarte, J. B. C., Alves, C. N., & de Molfetta, F. A. (2015). Virtual screening and molecular dynamics simulations from a bank of molecules of the amazon region against functional NS3-4A protease-helicase enzyme of hepatitis C virus. Applied Biochemistry and Biotechnology, 176(6), 1709–1721. https://doi.org/10.1007/s12010-015-1672-5
  • Poli, G., Dimmito, M. P., Mollica, A., Zengin, G., Benyhe, S., Zador, F., & Stefanucci, A. (2019). Molecules, 24, 3872.
  • Postigo, M. P., Guido, R. V. C., Oliva, G., Castilho, M. S., da Pitta, I. R., de Albuquerque, J. F. C., & Andricopulo, A. D. (2010). Discovery of new inhibitors of Schistosoma mansoni PNP by pharmacophore-based virtual screening. Journal of Chemical Information and Modelling, 50(9), 1693–1705. https://doi.org/10.1021/ci100128k
  • Postigo, M. P., Krogh, R., Terni, M. F., Pereira, H. M., Oliva, G., Castilho, M. S., & Andricopulo, A. D. (2011). Enzyme kinetics, structural analysis and molecular modeling studies on a series of Schistosoma mansoni PNP inhibitors. Journal of the Brazilian Chemical Society, 22(3), 583–591. https://doi.org/10.1590/S0103-50532011000300024
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics., 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sanner, M. F. (1999). Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling, 17(1), 57–61.
  • Schneeberger, P. H. H., Coulibaly, J. T., Panic, G., Daubenberger, C., Gueuning, M., Frey, J. E., & Keiser, J. (2018). Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasit Vectors, 11(1), 168–168. https://doi.org/10.1186/s13071-018-2739-2
  • Siqueira, L. d P., Fontes, D. A. F., Aguilera, C. S. B., Timóteo, T. R. R., Ângelos, M. A., Silva, L. C. P. B. B., de Melo, C. G., Rolim, L. A., da Silva, R. M. F., & Neto, P. J. R. (2017). Schistosomiasis: Drugs used and treatment strategies. Acta Tropica, 176, 179–187. https://doi.org/10.1016/j.actatropica.2017.08.002
  • Sitkoff, D., Sharp, K. A., & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. The Journal of Physical Chemistry, 98(7), 1978–1988. https://doi.org/10.1021/j100058a043
  • Souza, A., Cardoso, F., Martins, L., Alves, C., Silva, J., & Molfetta, F. (2021). Journal of the Brazilian Chemical Society, 32, 83–97.
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate − DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Stroehlein, A. J., Young, N. D., Jex, A. R., Sternberg, P. W., Tan, P., Boag, P. R., Hofmann, A., & Gasser, R. B. (2015). Defining the Schistosoma haematobium kinome enables the prediction of essential kinases as anti-schistosome drug targets. Scientific Reports, 5, 17759–17759. https://doi.org/10.1038/srep17759
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics: PCCP, 16(40), 22035–22045. https://doi.org/10.1039/c4cp03179b
  • Torini, J. R., Romanello, L., Batista, F. A. H., Serrão, V. H. B., Faheem, M., Zeraik, A. E., Bird, L., Nettleship, J., Reddivari, Y., Owens, R., DeMarco, R., Borges, J. C., Brandão-Neto, J., & Pereira, H. D. M. (2018). The molecular structure of Schistosoma mansoni PNP isoform 2 provides insights into the nucleoside selectivity of PNPs. PLOS One, 13(9), e0203532. https://doi.org/10.1371/journal.pone.0203532
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61(1-2), 126–148. https://doi.org/10.1007/BF01340294
  • Verlet, L. (1967). Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98–103. https://doi.org/10.1103/PhysRev.159.98
  • Verlet, L. (1968). Computer "experiments" on classical fluids. II. Equilibrium correlation functions. Physical Review, 165(1), 201–214. https://doi.org/10.1103/PhysRev.165.201
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wang, R., & Wang, S. (2001). How does consensus scoring work for virtual library screening? An idealized computer experiment. Journal of Chemical Information and Computer Sciences, 41(5), 1422–1426. https://doi.org/10.1021/ci010025x
  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106(3), 765–784. https://doi.org/10.1021/ja00315a051
  • Weiser, J., Shenkin, P. S., & Still, W. C. (1999). Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). Journal of Computational Chemistry, 20(2), 217–230. https://doi.org/10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A
  • Zálešák, F., Bon, D. J.-Y D., & Pospíšil, J. (2019). Lignans and neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacological Research, 146, 104284–104284. https://doi.org/10.1016/j.phrs.2019.104284

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.