211
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Docking and molecular dynamics predicted B-DNA and dihydropyrimidinone selenoesters interactions elucidating antiproliferative effects on breast adenocarcinoma cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8261-8273 | Received 23 Nov 2020, Accepted 25 Mar 2021, Published online: 13 Apr 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2(2), 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ameen, F., Siddiqui, S., Kausar, T. M., Nayeem, S. M., Sarwar, T., Rizvi, M. M. A., Rehman, S., & Tabish, M. (2020). Interaction of memantine with calf thymus DNA: An in-vitro and in-silico approach and cytotoxic effect on the cancerous cell lines. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1823886
  • Badisa, R. B., Darling-Reed, S. F., Joseph, P., Cooperwood, J. S., Latinwo, L. M., & Goodman, C. B. (2009). Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Research, 29(8), 2993–2996.
  • Barbosa, F. A. R., Canto, R. F. S., Saba, S., Rafique, J., & Braga, A. L. (2016). Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer's disease. Bioorganic & Medicinal Chemistry, 24(22), 5762–5770. https://doi.org/10.1016/j.bmc.2016.09.031
  • Barbosa, F. A. R., Siminski, T., Canto, R. F. S., Almeida, G. M., Mota, N. S. R. S., Ourique, F., Pedrosa, R. C., & Braga, A. L. (2018). Novel pyrimidinic selenourea induces DNA damage, cell cycle arrest, and apoptosis in human breast carcinoma. European Journal of Medicinal Chemistry, 155, 503–515. https://doi.org/10.1016/j.ejmech.2018.06.026
  • Barca, G. M. J., Bertoni, C., Carrington, L., Datta, D., De Silva, N., Deustua, J. E., Fedorov, D. G., Gour, J. R., Gunina, A. O., Guidez, E., Harville, T., Irle, S., Joe Ivanic, J., Kowalski, K., Leang, S. S., Li, H., Li, W., Lutz, J. J., Magoulas, I., … Gordon, M. S. (2020). Recent developments in the general atomic and molecular electronic structure system. The Journal of Chemical Physics, 152(15), 154102–154127. https://doi.org/10.1063/5.0005188
  • Belizário, J., Vieira-Cordeiro, L., & Enns, S. (2015). Necroptotic cell death signaling and execution pathway: Lessons from knockout mice. Mediators of Inflammation, 2015, 128076. https://doi.org/10.1155/2015/128076
  • Benassi, J. C., Barbosa, F. A. R., Grinevicius, V. M. A. S., Ourique, F., Coelho, D., Felipe, K. B., Braga, A. L., Filho, D. W., & Pedrosa, R. C. (2021). Novel Dihydropyrimidinone-Derived Selenoesters as Potential Cytotoxic Agents to Human Hepatocellular Carcinoma: Molecular Docking and DNA Fragmentation. Anti-Cancer Agents in Medicinal Chemistry, 21(6), 703–715. https://doi.org/10.2174/1871520620666200728124640 32723262
  • Burger, H., & Nooter, K. (2004). Pharmacokinetic resistance to imatinib mesylate: Role of the ABC drug pumps ABCG2 (BCRP) and ABCB1 (MDR1) in the oral bioavailability of imatinib. Cell Cycle (Georgetown, Tex.), 3(12), 1502–1505. https://doi.org/10.4161/cc.3.12.1331
  • Candiotto, G., Giro, R., Horta, B. A. C., Rosselli, F. P., Cicco, M., Achete, C. A., Marco Cremona, M., & Capaz, R. B. (2020). Emission redshift in DCM2-doped Alq3 caused by nonlinear Stark shifts and Förster-mediated exciton diffusion. Physical Review B, 102(23), 1–7. https://doi.org/10.1103/PhysRevB.102.235401
  • Cecilio, A. P., Takakura, E. T., Jumes, J. J., Santos, J. W., Herrera, A. C., Victorino, V. J., & Panis, C. (2015). Breast cancer in Brazil: Epidemiology and treatment challenges. Breast Cancer (Dove Medical Press), 7, 43–49. https://doi.org/10.2147/BCTT.S50361
  • Chang, F., Lee, J. T., Navolanic, P. M., Steelman, L. S., Shelton, J. G., Blalock, W. L., Franklin, R. A., & McCubrey, J. A. (2003). Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: A target for cancer chemotherapy. Leukemia, 17(3), 590–603. https://doi.org/10.1038/sj.leu.2402824
  • Chen, N. T., Wu, C. Y., Chung, C. Y., Hwu, Y., Cheng, S. H., Mou, C. Y., & Lo, L. W. (2012). Probing the dynamics of doxorubicin–DNA intercalation during the initial activation of apoptosis by fluorescence lifetime imaging microscopy (FLIM). Plos One, 7(9), e44947–44954. https://doi.org/10.1371/journal.pone.0044947
  • Cheung-Ong, K., Giaever, G., & Nislow, C. (2013). DNA-damaging agents in cancer chemotherapy: Serendipity and chemical biology. Chemistry & Biology, 20(5), 648–659. https://doi.org/10.1016/j.chembiol.2013.04.007
  • Cho, Y., Min, S. K., Yun, J., Kim, W. Y., Tkatchenko, A., & Kim, K. S. (2013). Noncovalent interactions of DNA bases with naphthalene and graphene. Journal of Chemical Theory and Computation, 9(4), 2090–2096. https://doi.org/10.1021/ct301097u
  • Clark, A. J., Tiwary, P., Borrelli, K., Feng, S., Miller, E. B., Abel, R., Friesner, R. A., & Berne, B. J. (2016). Prediction of protein–ligand binding poses via a combination of induced fit docking and metadynamics simulations. Journal of Chemical Theory and Computation, 12(6), 2990–2998. https://doi.org/10.1021/acs.jctc.6b00201
  • Connolly, M. L. (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science (New York, N.Y.), 221(4612), 709–713. https://doi.org/10.1126/science.6879170
  • Dai, S. X., Li, W. X., Han, F. F., Guo, Y. C., Zheng, J. J., Liu, J. Q., Wang, Q., Gao, Y. D., Li, G. H., & Huang, J. F. (2016). In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database. Scientific Reports, 6(1), 1–11. https://doi.org/10.1038/srep34972
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717–42730. https://doi.org/10.1038/srep42717
  • David, S., & Hamilton, J. P. (2010). Drug-induced liver injury. US Gastroenterology & Hepatology Review, 6, 73–80.
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. The Journal of Chemical Physics, 54(2), 724–728. https://doi.org/10.1063/1.1674902
  • Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., Connolly, D. T., & Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of Medicinal Chemistry, 45(11), 2213–2221. https://doi.org/10.1021/jm010548w
  • Dong, J., Wang, N. N., Yao, Z. J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A. P., & Cao, D. C. (2018). ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1), 1–11. https://doi.org/10.1186/s13321-018-0283-x
  • Erdem, A., & Ozsoz, M. (2002). Electrochemical DNA biosensors based on DNA–drug interactions. Electroanalysis, 14(14), 965–974. https://doi.org/10.1002/1521-4109(200208)14:14<965::AID-ELAN965>3.0.CO;2-U
  • Farias, A. B., Candiotto, G., Siragusa, L., Goracci, L., Cruciani, G., Edson, R. A., Oliveira, E. R. A. O., & Horta, B. A. C. (2021). Targeting Nsp9 as an anti-SARS-CoV-2 strategy. New Journal of Chemistry, 45(2), 522–525. https://doi.org/10.1039/D0NJ04909C
  • Fátima, A., Braga, T. C., Neto, L. O., Terra, B. S., Oliveira, B. G. F., Silva, D. L., & Modolo, L. V. (2015). A mini-review on Biginelli adducts with notable pharmacological properties. Journal of Advanced Research, 6(3), 363–373. https://doi.org/10.1016/j.jare.2014.10.006
  • Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Forli, S., Huey, R., Pique, M. E., Sanner, M., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Franken, N. A. P., Rodermond, H. M., Stap, J., Haveman, J., & van Bree, C. (2006). Clonogenic assay of cells in vitro. Nature Protocols, 1(5), 2315–2319. https://doi.org/10.1038/nprot.2006.339
  • Gfeller, D. S. (2012). Documentation. Swiss Institute of Bioinformatics. Lausane, Swiss. 13. p.
  • Gilad, Y., & Senderowitz, H. (2014). Docking studies on DNA intercalators. Journal of Chemical Information and Modeling, 54(1), 96–107. − https://doi.org/10.1021/ci400352t
  • Hamer, J., & Warner, E. (2017). Lifestyle modifications for patients with breast cancer to improve prognosis and optimize overall health. Canadian Medical Association Journal, 21(189), 268–274.
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • Harmsen, S., Meijerman, I., Beijnen, J. H., & Schellens, J. H. (2007). The role of nuclear receptors in pharmacokinetic drug–drug interactions in oncology. Cancer Treatment Reviews, 33(4), 369–380. https://doi.org/10.1016/j.ctrv.2007.02.003
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hsin, J., Arkhipov, A., Yin, Y., Stone, J. E., & Schulten, K. (2008). Using VMD – An introductory tutorial. Current Protocols in Bioinformatics, 24(1), 1–48. https://doi.org/10.1002/0471250953.bi0507s24
  • Hulka, B. S., & Moorman, P. G. (2001). Breast cancer: Hormones and other risk factors. Maturitas, 38(1), 103–113. https://doi.org/10.1016/s0378-5122(00)00196-1
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Instituto Nacional de Câncer José Alencar Gomes da Silva (INCA). (2019). Estimativa 2020: Incidência de câncer no Brasil/Instituto Nacional de Câncer José Alencar Gomes da Silva. Rio de Janeiro: INCA.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kappe, C. O. (2000). Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Accounts of Chemical Research, 33(12), 879–888. https://doi.org/10.1021/ar000048h
  • Kapuci, M., Ulker, Z., Gurkan, S., & Alpsoy, L. (2014). Determination of cytotoxic and genotoxic effects of naphthalene, 1-naphthol and 2-naphthol on human lymphocyte culture. Toxicology and Industrial Health, 30(1), 82–89. https://doi.org/10.1177/0748233712451772
  • Kaur, R., Chaudhary, S., Kumar, K., Gupta, M. K., & Rawal, R. K. (2017). Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. European Journal of Medicinal Chemistry, 132, 108–134. https://doi.org/10.1016/j.ejmech.2017.03.025
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lemkul, J. A. (2019). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 5068–5121. https://doi.org/10.33011/livecoms.1.1.5068
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Lopez, J., & Tait, S. W. G. (2015). Mitochondrial apoptosis: Killing cancer using the enemy within. British Journal of Cancer, 112(6), 957–962. https://doi.org/10.1038/bjc.2015.85
  • McGahon, A. J., Martin, S. J., Bissonnette, R. P., Mahboubi, A., Shi, Y., Mogil, R. J., Nishioka, W. K., & Green, D. R. (1995). The end of the (cell) line: Methods for the study of apoptosis in vitro. Methods in Cell Biology, 46, 153–185.
  • Momen-Roknabadi, A., Sadeghi, M., Pezeshk, H., & Marashi, S. A. (2008). Impact of residue accessible surface area on the prediction of protein secondary structures. BMC Bioinformatics, 9(1), 357–368. https://doi.org/10.1186/1471-2105-9-357
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Park, K., & Cho, A. E. (2017). Using reverse docking to identify potential targets for ginsenosides. Journal of Ginseng Research, 41(4), 534–539. https://doi.org/10.1016/j.jgr.2016.10.005
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331–4353. https://doi.org/10.3390/ijms20184331
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Samadder, P., Aithal, R., Belan, O., & Krejci, L. (2016). Cancer TARGETases: DSB repair as a pharmacological target. Pharmacology & Therapeutics, 161, 111–131. https://doi.org/10.1016/j.pharmthera.2016.02.007
  • Sbirkova-Dimitrova, H. I., & Shivachev, B. (2017). Crystal structure of the DNA sequence d(CGTGAATTCACG)2 with DAPI. Acta Crystallographica Section F, 73, 500–504.
  • Schrödinger, L. L. C. (2017). The PyMOL molecular graphics system, Version 1.8. 2015.
  • Silveira, V. C., Luz, J. S., Oliveira, C. C., Graziani, I., Ciriolo, M. R., & Ferreira, A. M. C. (2008). Double-strand DNA cleavage induced by oxindole-Schiff base copper (II) complexes with potential antitumor activity. Journal of Inorganic Biochemistry, 102(5–6), 1090–1103. https://doi.org/10.1016/j.jinorgbio.2007.12.033
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study UV–Visible, fluorescence spectroscopies and cyclic voltammetry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Temple, R. J., & Himmel, M. H. (2002). Safety of newly approved drugs: Implications for prescribing. Journal of the American Medical Association, 287(17), 2273–2275. https://doi.org/10.1001/jama.287.17.2273
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Usman, A., & Ahmad, M. (2017). Binding of bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies. Chemosphere, 181, 536–543. https://doi.org/10.1016/j.chemosphere.2017.04.115
  • Van der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • World Health Organization. 2020. Global Cancer Observatory: Data visualization tools for exploring the global cancer burden in 2018. Retrieved October 8, 2020 from https://gco.iarc.fr/today
  • Xu, F., Jun Chen, C., Wu, Q., Gu, W., Shen, Y., Lu, C., Zhang, Y., Liu, S., & Liao, H. (2020). The antitumor molecular mechanism of Alisma orientalis with c-myc DNA: multi-spectroscopic analysis and molecular simulation. Journal of Biomolecular Structure & Dynamics, 38(14), 4189–4209. https://doi.org/10.1080/07391102.2019.1688687

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.