245
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

The role of positive charged residue in the proton-transfer mechanism of two-domain laccase from Streptomyces griseoflavus Ac-993

, , , , &
Pages 8324-8331 | Received 02 Aug 2020, Accepted 26 Mar 2021, Published online: 19 Apr 2021

References

  • Afonine, P. V., Grosse-Kunstleve, R. W., Echols, N., Headd, J. J., Moriarty, N. W., Mustyakimov, M., Terwilliger, T. C., Urzhumtsev, A., Zwart, P. H., & Adams, P. D. (2012). Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D: Biological Crystallography, 68(Pt 4), 352–367. https://doi.org/10.1107/S0907444912001308
  • Brissos, V., Chen, Z., & Martins, L. O. (2012). The kinetic role of carboxylate residues in the proximity of the trinuclear centre in the O2 reactivity of CotA-laccase. Dalton Transactions, 41(20), 6247–6255. https://doi.org/10.1039/c2dt12067d
  • Bronikowski, A., Hagedoorn, P. L., Koschorreck, K., & Urlacher, V. B. (2017). Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation. AMB Express, 7(1), 73. https://doi.org/10.1186/s13568-017-0368-3
  • Brown, L. S., Bonet, L., Needleman, R., & Lanyi, J. K. (1993). Estimated acid dissociation constants of the Schiff base, Asp-85, and Arg-82 during the bacteriorhodopsin photocycle. Biophysical Journal, 65(1), 124–130. https://doi.org/10.1016/S0006-3495(93)81064-6
  • Buch-Pedersen, M. J., Pedersen, B. P., Veierskov, B., Nissen, P., & Palmgren, M. G. (2009). Protons and how they are transported by proton pumps. Pflugers Archiv: European Journal of Physiology, 457(3), 573–579. https://doi.org/10.1007/s00424-008-0503-8
  • Camarero, S., Ibarra, D., Martínez, Á. T., Romero, J., Gutiérrez, A., & del Río, J. C. (2007). Paper pulp delignification using laccase and natural mediators. Enzyme and Microbial Technology, 40(5), 1264–1271. https://doi.org/10.1016/j.enzmictec.2006.09.016
  • Cukierman, S. (2006). Et tu, Grotthuss! and other unfinished stories. Biochimica et Biophysica Acta, 1757(8), 876–885. https://doi.org/10.1016/j.bbabio.2005.12.001
  • DeLano, W. L. (2008). The PyMOL molecular graphics system. http://www.pymol.org/
  • Dittmer, N. T., & Kanost, M. R. (2010). Insect multicopper oxidases: Diversity, properties, and physiological roles. Insect Biochemistry and Molecular Biology, 40(3), 179–188. https://doi.org/10.1016/j.ibmb.2010.02.006
  • Dudev, T., Musset, B., Morgan, D., Cherny, V. V., Smith, S. M. E., Mazmanian, K., DeCoursey, T. E., & Lim, C. (2015). Selectivity mechanism of the voltage-gated proton channel, HV1. Scientific Reports, 5, 10320–10311. https://doi.org/10.1038/srep10320
  • Emsley, P., Lohkamp, B., Scott, W. G., & Cowtan, K. (2010). Features and development of Coot. Acta Crystallographica Section D: Biological Crystallography, 66(Pt 4), 486–501. https://doi.org/10.1107/S0907444910007493
  • Gabdulkhakov, A., Kolyadenko, I., Kostareva, O., Mikhaylina, A., Oliveira, P., Tamagnini, P., Lisov, A., & Tishchenko, S. (2019). Investigations of accessibility of T2/T3 copper center of two-domain laccase from Streptomyces griseoflavus Ac-993. International Journal of Molecular Sciences, 20(13), 3184. https://doi.org/10.3390/ijms20133184
  • Gabdulkhakov, A. G., Kostareva, O. S., Kolyadenko, I. A., Mikhaylina, A. O., Trubitsina, L. I., & Tishchenko, S. V. (2018). Incorporation of copper ions into T2/T3 centers of two-domain laccases. Molecular Biology, 52(1), 23–29. https://doi.org/10.1134/S0026893318010041
  • Gavnholt, B., & Larsen, K. (2002). Molecular biology of plant laccases in relation to lignin formation. Physiologia Plantarum, 116(3), 273–280. https://doi.org/10.1034/j.1399-3054.2002.1160301.x
  • Glazunova, O. A., Polyakov, K. M., Fedorova, T. V., Dorovatovskii, P. V., & Koroleva, O. V. (2015). Elucidation of the crystal structure of Coriolopsis caperata laccase: Restoration of the structure and activity of the native enzyme from the T2-depleted form by copper ions. Acta Crystallographica Section D: Biological Crystallography, 71(Pt 4), 854–861. https://doi.org/10.1107/S1399004715001595
  • Gupta, A., Nederlof, I., Sottini, S., Tepper, A. W. J. W., Groenen, E. J. J., Thomassen, E. A. J., & Canters, G. W. (2012). Involvement of Tyr108 in the enzyme mechanism of the small laccase from Streptomyces coelicolor. Journal of the American Chemical Society, 134(44), 18213–18216. https://doi.org/10.1021/ja3088604
  • Heinfling, A., Martínez, M. J., Martínez, A. T., Bergbauer, M., & Szewzyk, U. (1998). Purification and characterization of peroxidases from the dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiology Letters, 165(1), 43–50. https://doi.org/10.1111/j.1574-6968.1998.tb13125.x
  • Hilbish, T. J., & Pino, M. A. (1994). The structure and function of fungal laccases. Microbiology, 140(14), 19–26. https://doi.org/10.1099/13500872-140-1-19
  • Kabsch, W. (2010). XDS. Acta Crystallographica Section D: Biological Crystallography, 66(Pt 2), 125–132. https://doi.org/10.1107/S0907444909047337
  • Kraft, P., Bergamaschi, A., Broennimann, C., Dinapoli, R., Eikenberry, E. F., Henrich, B., Johnson, I., Mozzanica, A., Schlepütz, C. M., Willmott, P. R., & Schmitt, B. (2009). Performance of single-photon-counting PILATUS detector modules. Journal of Synchrotron Radiation, 16(Pt 3), 368–375. https://doi.org/10.1107/S0909049509009911
  • Kunamneni, A., Plou, F. J., Ballesteros, A., & Alcalde, M. (2008). Laccases and their applications: A patent review. Recent Patents on Biotechnology, 2(1), 10–24. https://doi.org/10.2174/187220808783330965
  • Lanyi, J. K. (2004). Bacteriorhodopsin. Annual Review of Physiology, 66, 665–688. https://doi.org/10.1146/annurev.physiol.66.032102.150049
  • Li, X., Wei, Z., Zhang, M., Peng, X., Yu, G., Teng, M., & Gong, W. (2007). Crystal structures of E. coli laccase CueO at different copper concentrations. Biochemical and Biophysical Research Communications, 354(1), 21–26. https://doi.org/10.1016/j.bbrc.2006.12.116
  • Machczynski, M. C., Vijgenboom, E., Samyn, B., & Canters, G. W. (2004). Characterization of SLAC: A small laccase from Streptomyces coelicolor with unprecedented activity. Protein Science, 13(9), 2388–2397. https://doi.org/10.1110/ps.04759104
  • McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40(Pt 4), 658–674. https://doi.org/10.1107/S0021889807021206
  • Mowat, C. G., Moysey, R., Miles, C. S., Leys, D., Doherty, M. K., Taylor, P., Walkinshaw, M. D., Reid, G. A., & Chapman, S. K. (2001). Kinetic and crystallographic analysis of the key active site acid/base arginine in a soluble fumarate reductase. Biochemistry, 40(41), 12292–12298. https://doi.org/10.1021/bi011360h
  • Mueller, U., Förster, R., Hellmig, M., Huschmann, F. U., Kastner, A., Malecki, P., Pühringer, S., Röwer, M., Sparta, K., Steffien, M., Ühlein, M., Wilk, P., & Weiss, M. S. (2015). The macromolecular crystallography beamlines at BESSY II of the Helmholtz-Zentrum Berlin: Current status and perspectives. The European Physical Journal Plus, 130(7), 141. https://doi.org/10.1140/epjp/i2015-15141-2
  • Murshudov, G. N., Skubák, P., Lebedev, A. A., Pannu, N. S., Steiner, R. A., Nicholls, R. A., Winn, M. D., Long, F., & Vagin, A. A. (2011). REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallographica Section D: Biological Crystallography, 67(Pt 4), 355–367. https://doi.org/10.1107/S0907444911001314
  • Osipov, E. M., Polyakov, K. M., Tikhonova, T. V., Kittl, R., Dorovatovskii, P. V., Shleev, S. V., Popov, V. O., & Ludwig, R. (2015). Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada. Acta Crystallographica Section F: Structural Biology Communications, 71(Pt 12), 1465–1469. https://doi.org/10.1107/S2053230X1502052X
  • Pavelka, A., Sebestova, E., Kozlikova, B., Brezovsky, J., Sochor, J., & Damborsky, J. (2016). CAVER: Algorithms for analyzing dynamics of tunnels in macromolecules. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 13(3), 505–517. https://doi.org/10.1109/TCBB.2015.2459680
  • Piontek, K., Antorini, M., & Choinowski, T. (2002). Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. The Journal of Biological Chemistry, 277(40), 37663–37669. https://doi.org/10.1074/jbc.M204571200
  • Polyakov, K. M., Gavryushov, S., Ivanova, S., Fedorova, T. V., Glazunova, O. A., Popov, A. N., & Koroleva, O. V. (2017). Structural study of the X-ray-induced enzymatic reduction of molecular oxygen to water by Steccherinum murashkinskyi laccase: Insights into the reaction mechanism. Acta Crystallographica Section D: Structural Biology, 73(Pt 5), 388–401. https://doi.org/10.1107/S2059798317003667
  • Quintanar, L., Stoj, C., Wang, T. P., Kosman, D. J., & Solomon, E. I. (2005). Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p. Biochemistry, 44(16), 6081–6091. https://doi.org/10.1021/bi047379c
  • Solomon, E. I., Augustine, A. J., & Yoon, J. (2008). O2 reduction to H2O by the multicopper oxidases. Dalton Transactions, (30), 3921–3932. https://doi.org/10.1039/b800799c
  • Strong, P. J., & Claus, H. (2011). Laccase: A review of its past and its future in bioremediation. Critical Reviews in Environmental Science and Technology, 41(4), 373–434. https://doi.org/10.1080/10643380902945706
  • Trubitsina, L. I., Tishchenko, S. V., Gabdulkhakov, A. G., Lisov, A. V., Zakharova, M. V., & Leontievsky, A. a. (2015). Structural and functional characterization of two-domain laccase from Streptomyces viridochromogenes. Biochimie, 112, 151–159. https://doi.org/10.1016/j.biochi.2015.03.005
  • Viterbo, A., Yagen, B., & Mayer, A. M. (1992). Cucurbitacins, ‘attack’ enzymes and laccase in Botrytis cinerea. Phytochemistry, 32(1), 61–65. https://doi.org/10.1016/0031-9422(92)80107-P
  • Wariishi, H., Valli, K., & Gold, M. H. (1992). Manganese(II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. The Journal of Biological Chemistry, 267(33), 23688–23695. https://doi.org/10.1016/S0021-9258(18)35893-9
  • Wraight, C. A. (2006). Chance and design – Proton transfer in water, channels and bioenergetic proteins. Biochimica et Biophysica Acta, 1757(8), 886–912. https://doi.org/10.1016/j.bbabio.2006.06.017
  • Yoon, J., Liboiron, B. D., Sarangi, R., Hodgson, K. O., Hedman, B., & Solomon, E. I. (2007). The two oxidized forms of the trinuclear Cu cluster in the multicopper oxidases and mechanism for the decay of the native intermediate. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13609–13614. https://doi.org/10.1073/pnas.0705137104

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.