233
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Modulation of proteasome activity by curcumin and didemethylcurcumin

, , , , &
Pages 8332-8339 | Received 13 Dec 2020, Accepted 26 Mar 2021, Published online: 20 Apr 2021

References

  • Ali, R. E., & Rattan, S. I. (2006). Curcumin's biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Annals of the New York Academy of Sciences, 1067, 394–399. https://doi.org/10.1196/annals.1354.056
  • Almond, J. B., & Cohen, G. M. (2002). The proteasome: A novel target for cancer chemotherapy. Leukemia, 16(4), 433–443. https://doi.org/10.1038/sj.leu.2402417
  • Anand, P., Thomas, S. G., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Sung, B., Tharakan, S. T., Misra, K., Priyadarsini, I. K., Rajasekharan, K. N., & Aggarwal, B. B. (2008). Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochemical Pharmacology, 76(11), 1590–1611. https://doi.org/10.1016/j.bcp.2008.08.008
  • Banerjee, S., Ji, C., Mayfield, J. E., Goel, A., Xiao, J., Dixon, L. E., & Guo, X. (2018). Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proceedings of the National Academy of Sciences of the United States of America, 115(32), 8155–8160. https://doi.org/10.1073/pnas.1806797115
  • Chen, M., Du, Z.-Y., Zheng, X., Li, D.-L., Zhou, R.-P., & Zhang, K. (2018). Use of curcumin in diagnosis, prevention, and treatment of Alzheimer's disease. Neural Regeneration Research, 13(4), 742–752. https://doi.org/10.4103/1673-5374.230303
  • Daniel, K. G., Landis-Piwowar, K. R., Chen, D., Wan, S. B., Chan, T.-H., & Dou, Q. P. (2006). Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome β5 subunit. International Journal of Molecular Medicine, 18(4), 625–632.
  • DeMartino, G. N., & Slaughter, C. A. (1999). The proteasome, a novel protease regulated by multiple mechanisms. The Journal of Biological Chemistry, 274(32), 22123–22126. https://doi.org/10.1074/jbc.274.32.22123
  • den Haan, J., Morrema, T. H. J., Rozemuller, A. J., Bouwman, F. H., & Hoozemans, J. J. M. (2018). Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer's disease brains: Implications for in-vivo diagnostics. Acta Neuropathologica Communications, 6(1), 75. https://doi.org/10.1186/s40478-018-0577-2
  • Fuchs, D., Berges, C., Opelz, G., Daniel, V., & Naujokat, C. (2008). Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. Journal of Cellular Biochemistry, 103(1), 270–283. https://doi.org/10.1002/jcb.21405 PMID: 17516511.
  • Goldberg, A. L. (2003). Protein degradation and protection against misfolded or damaged proteins. Nature, 426(6968), 895–899. https://doi.org/10.1038/nature02263
  • Groll, M., Koguchi, Y., Huber, R., & Kohno, J. (2001). Crystal structure of the 20 S proteasome:TMC-95A complex: a non-covalent proteasome inhibitor. Journal of Molecular Biology, 311(3), 543–548. https://doi.org/10.1006/jmbi.2001.4869
  • Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479. https://doi.org/10.1146/annurev.biochem.67.1.425
  • Hill, C. P., Masters, E. I., & Whitby, F. G. (2002). The 11S regulators of 20S proteasome activity. Current Topics in Microbiology and Immunology, 68, 73–89.
  • Huang, L., Ho, P., & Chen, C. H. (2007). Activation and inhibition of the proteasome by betulinic acid and its derivatives. FEBS Letters, 581(25), 4955–4959. https://doi.org/10.1016/j.febslet.2007.09.031
  • Jain, A. N. (1996). Scoring noncovalent protein-ligand interactions: A continuous differentiable function tuned to compute binding affinities. Journal of Computer-Aided Molecular Design, 10(5), 427–440. https://doi.org/10.1007/BF00124474
  • Jansen, A. H., Reits, E. A., & Hol, E. M. (2014). The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Frontiers in Molecular Neuroscience, 7, 73. https://doi.org/10.3389/fnmol.2014.00073
  • Katsiki, M., Chondrogianni, N., Chinou, I., Rivett, A. J., & Gonos, E. S. (2007). The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Research, 10(2), 157–172. https://doi.org/10.1089/rej.2006.0513
  • Khan, T. K., & Nelson, T. J. (2018). Protein kinase C activator bryostatin-1 modulates proteasome function. Journal of Cellular Biochemistry, 119(8), 6894–6904. https://doi.org/10.1002/jcb.26887
  • Koronyo, Y., Biggs, D., Barron, E., Boyer, D. S., Pearlman, J. A., Au, W. J., Kile, S. J., Blanco, A., Fuchs, D. T., Ashfaq, A., Frautschy, S., Cole, G. M., Miller, C. A., Hinton, D. R., Verdooner, S. R., Black, K. L., & Koronyo-Hamaoui, M. (2017). Retinal amyloid pathology and proof-of-concept imaging trial in Alzheimer's disease. JCI Insight, 2(16), e93621. https://doi.org/10.1172/jci.insight.93621
  • Lim, K.-L., & Tan, J. M. M. (2007). Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochemistry, 8(Suppl 1), S13. https://doi.org/10.1186/1471-2091-8-S1-S13
  • Lokireddy, S., Kukushkin, N. V., & Goldberg, A. L. (2015). cAMP-induced phosphorylation of 26S proteasomes on Rpn6/PSMD11 enhances their activity and the degradation of misfolded proteins. Proceedings of the National Academy of Sciences of the United States of America, 112(52), E7176–E7185. https://doi.org/10.1073/pnas.1522332112
  • Ma, B., Chen, Y., Chen, L., Cheng, H., Mu, C., Li, J., Gao, R., Zhou, C., Cao, L., Liu, J., Zhu, Y., Chen, Q., & Wu, S. (2015). Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase. Nature Cell Biology, 17(1), 95–103. https://doi.org/10.1038/ncb3073
  • Majhi, A., Rahman, G. M., Panchal, S., & Das, J. (2010). Binding of curcumin and its long chain derivatives to the activator binding domain of novel protein kinase C. Bioorganic & Medicinal Chemistry, 18(4), 1591–1598. https://doi.org/10.1016/j.bmc.2009.12.075
  • Manasanch, E. E., & Orlowski, R. Z. (2017). Proteasome inhibitors in cancer therapy. Nature Reviews. Clinical Oncology, 14(7), 417–433. https://doi.org/10.1038/nrclinonc.2016.206
  • Milacic, V., Banerjee, S., Landis-Piwowar, K. R., Sarkar, F. H., Majumdar, A. P., & Dou, Q. P. (2008). Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo. Cancer Research, 68(18), 7283–7292. https://doi.org/10.1158/0008-5472.CAN-07-6246
  • Orthwein, A., Noordermeer, S. M., Wilson, M. D., Landry, S., Enchev, R. I., Sherker, A., Munro, M., Pinder, J., Salsman, J., Dellaire, G., Xia, B., Peter, M., & Durocher, D. (2015). A mechanism for the suppression of homologous recombination in G1 cells. Nature, 528(7582), 422–426. https://doi.org/10.1038/nature16142
  • Pastore, N., Blomenkamp, K., Annunziata, F., Piccolo, P., Mithbaokar, P., Maria Sepe, R., Vetrini, F., Palmer, D., Ng, P., Polishchuk, E., Iacobacci, S., Polishchuk, R., Teckman, J., Ballabio, A., & Brunetti-Pierri, N. (2013). Gene transfer of master autophagy regulator TFEB results in clearance of toxic protein and correction of hepatic disease in alpha-1-anti-trypsin deficiency. EMBO Molecular Medicine, 5(3), 397–412. https://doi.org/10.1002/emmm.201202046
  • Rechsteiner, M., Realini, C., & Ustrell, V. (2000). The proteasome activator 11 S REG (PA28) and class I antigen presentation. Biochemical Journal, 345(1), 1–15. https://doi.org/10.1042/0264-6021:3450001
  • Riederer, B. M., Leuba, G., Vernay, A., & Riederer, I. M. (2011). The role of the ubiquitin proteasome system in Alzheimer's disease. Experimental Biology and Medicine (Maywood, N.J.), 236(3), 268–276. https://doi.org/10.1258/ebm.2010.010327
  • Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., Gylys, K. H., Badmaev, V., Heath, D. D., Apostolova, L. G., Porter, V., Vanek, Z., Marshall, G. A., Hellemann, G., Sugar, C., Masterman, D. L., Montine, T. J., Cummings, J. L., & Cole, G. M. (2012). Oral curcumin for Alzheimer's disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's Research & Therapy, 4(5), 43. https://doi.org/10.1186/alzrt146
  • Saez, I., & Vilchez, D. (2014). The mechanistic Links between proteasome activity, aging and age-related Diseases. Current Genomics, 15(1), 38–51. https://doi.org/10.2174/138920291501140306113344
  • Schrader, J., Henneberg, F., Mata, R. A., Tittmann, K., Schneider, T. R., Stark, H., Bourenkov, G., & Ashwin, C. (2016). The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science (New York, N.Y.), 353(6299), 594–598. https://doi.org/10.1126/science.aaf8993
  • Smith, D. M., Daniel, K. G., Wang, Z., Guida, W. C., Chan, T.-H., & Dou, Q. P. (2003). Docking studies and model development of tea polyphenol proteasome inhibitors: Applications to rational drug design. Proteins: Structure, Function, and Bioinformatics, 54(1), 58–70. https://doi.org/10.1002/prot.10504
  • Thibaudeau, T. A., Anderson, R. T., & Smith, D. M. (2018). A common mechanism of proteasome impairment by neurodegenerative disease-associated oligomers. Nature Communications, 9, 1097.
  • Ustrell, V., Hoffman, L., Pratt, G., & Rechsteiner, M. (2002). PA200, a nuclear proteasome activator involved in DNA repair. The EMBO Journal, 21(13), 3516–3525. https://doi.org/10.1093/emboj/cdf333
  • Voges, D., Zwickl, P., & Baumeister, W. (1999). The 26S proteasome: A molecular machine designed for controlled proteolysis. Annual Review of Biochemistry, 68, 1015–1068. https://doi.org/10.1146/annurev.biochem.68.1.1015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.