220
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of the antiglycating potential of thymoquinone and its interaction with BSA

, , , , ORCID Icon, & ORCID Icon show all
Pages 8455-8463 | Received 08 Jan 2021, Accepted 30 Mar 2021, Published online: 28 Apr 2021

References

  • Ahmad, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., Damanhouri, Z. A., & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific Journal of Tropical Biomedicine, 3(5), 337–352. https://doi.org/10.1016/S2221-1691(13)60075-1
  • Alam, M. F., Varshney, S., Alam, M., Ahmed, A., & Younus, H. (2018). In vitro DNA binding studies of therapeutic and prophylactic drug citral. International Journal of Biological Macromolecules, 113, 300–308. https://doi.org/10.1016/j.ijbiomac.2018.02.098
  • Anwar, S., Khan, M. A., Sadaf, A., & Younus, H. (2014). A structural study on the protection of glycation of superoxide dismutase by thymoquinone. International Journal of Biological Macromolecules, 69, 476–481. https://doi.org/10.1016/j.ijbiomac.2014.06.003
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhogale, A., Patel, N., Sarpotdar, P., Mariam, J., Dongre, P. M., Miotello, A., & Kothari, D. C. (2013). Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloids and Surfaces. B, Biointerfaces, 102, 257–264. https://doi.org/10.1016/j.colsurfb.2012.08.023
  • BIOVIA. (2019). Dassault Systèmes, Discovery Studio. Dassault Systèmes.
  • Bujacz, A., Zielinski, K., & Sekula, B. (2014). Structural studies of bovine, equine, and leporine serum albumin complexes with naproxen. Proteins, 82(9), 2199–2208. https://doi.org/10.1002/prot.24583
  • Castagna, R., Donini, S., Colnago, P., Serafini, A., Parisini, E., & Bertarelli, C. (2019). Biohybrid electrospun membrane for the filtration of ketoprofen drug from water. ACS Omega, 4(8), 13270–13278. https://doi.org/10.1021/acsomega.9b01442
  • Cheng, Z., Liu, R., & Jiang, X. (2013). Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 115, 92–105. https://doi.org/10.1016/j.saa.2013.06.007
  • Cuneo, M. J., Changela, A., Warren, J. J., Beese, L. S., & Hellinga, H. W. (2006). The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites. Journal of Molecular Biology, 362(2), 259–270. https://doi.org/10.1016/j.jmb.2006.06.084
  • Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17(2), 144. https://doi.org/10.3390/ijms17020144
  • Gutierrez, R. M. P. (2012). Inhibition of advanced glycation end-product formation by Origanum majorana L. In Vitro and in streptozotocin-induced diabetic rats. Evidence-Based Complementary and Alternative Medicine, 2012, 598638. https://doi.org/10.1155/2012/598638
  • Hao, C., Xu, G., Wang, T., Lv, Z., Zhu, K., Li, B., Chen, S., & Sun, R. (2017). The mechanism of the interaction between curcumin and bovine serum albumin using fluorescence spectrum. Russian Journal of Physical Chemistry B, 11(1), 140–145. https://doi.org/10.1134/S1990793117010043
  • Jahanban-Esfahlan, A., Panahi-Azar, V., & Sajedi, S. (2015). Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers, 103(11), 638–645. https://doi.org/10.1002/bip.22697
  • Jahanban-Esfahlan, A., Dastmalchi, S., & Davaran, S. (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 91, 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032
  • Jalali, F., Dorraji, P. S., & Mahdiuni, H. (2014). Binding of the neuroleptic drug, gabapentin, to bovine serum albumin: Insights from experimental and computational studies. Journal of Luminescence, 148, 347–352. https://doi.org/10.1016/j.jlumin.2013.12.046
  • Jha, P., Momin, A. R., Kumar, D., & Ali, A. (2018). Reversal of glycoxidative damage of DNA and protein by antioxidants. Annals of Phytomedicine, 7(1), 101–105. https://doi.org/10.21276/ap.2018.7.1.12
  • Jiao, Q., Wang, R., Jiang, Y., & Liu, B. (2018). Study on the interaction between active components from traditional Chinese medicine and plasma proteins. Chemistry Central Journal, 12(1), 48. https://doi.org/10.1186/s13065-018-0417-2
  • Kelly, S. M., & Price, N. C. (2000). The use of Circular Dichroism in the investigation of protein structure and function. Current Protein & Peptide Science, 1(4), 349–384. https://doi.org/10.2174/1389203003381315
  • Khan, M. S., Dwivedi, S., Priyadarshini, M., Tabrez, S., Siddiqui, M. A., Jagirdar, H., Al-Senaidy, A. M., Al-Khedhairy, A. A., & Musarrat, J. (2013). Ribosylation of bovine serum albumin induces ROS accumulation and cell death in cancer line (MCF-7). European Biophysics Journal : EBJ, 42(11-12), 811–818. https://doi.org/10.1007/s00249-013-0929-6
  • Khan, M. A., Anwar, S., Aljarbou, A. N., Al-Orainy, M., Aldebasi, Y. H., Islam, S., & Younus, H. (2014). Protective effect of thymoquinone on glucose or methylglyoxal-induced glycation of superoxide dismutase. International Journal of Biological Macromolecules, 65, 16–20. https://doi.org/10.1016/j.ijbiomac.2014.01.001
  • Khan, M. S., Bhatt, S., Tabrez, S., Rehman, M. T., Alokail, M. S., & AlAjmi, M. F. (2020). Quinoline yellow (food additive) induced conformational changes in lysozyme: A spectroscopic, docking and simulation studies of dye-protein interactions. Preparative Biochemistry & Biotechnology, 50(7), 673–681. https://doi.org/10.1080/10826068.2020.1725774
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Kumar, D., & Ali, A. (2019). Antiglycation and antiaggregation potential of thymoquinone. Natural Volatiles & Essential Oils, 6(1), 25–33.
  • Kumar, D., Bhatkalkar, S. G., Sachar, S., & Ali, A. (2020). Studies on the antiglycating potential of zinc oxide nanoparticle and its interaction with BSA. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1803137
  • Losso, J. N., Bawadi, H. A., & Chintalapati, M. (2011). Inhibition of the formation of advanced glycation end products by thymoquinone. Food Chemistry, 128(1), 55–61. https://doi.org/10.1016/j.foodchem.2011.02.076
  • Lupidi, G., Scire, A., Camaioni, E., Khalife, K. H., De Sanctis, G., Tanfani, F., & Damiani, E. (2010). Thymoquinone, a potential therapeutic agent of Nigella sativa, binds to site I of human serum albumin. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 17(10), 714–720. https://doi.org/10.1016/j.phymed.2010.01.011
  • Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3-4), 174–182. https://doi.org/10.1016/j.molimm.2012.05.011
  • Miranda, H. V., El-Agnaf, O. M., & Outeiro, T. F. (2016). Glycation in Parkinson's disease and Alzheimer's disease. Movement Disorders: Official Journal of the Movement Disorder Society, 31(6), 782–790. https://doi.org/10.1002/mds.26566
  • Ritchie, D. W., & Kemp, G. J. L. (1999). Fast computation, rotation, and comparison of low resolution spherical harmonic molecular surfaces. Journal of Computational Chemistry, 20(4), 383–395. https://doi.org/10.1002/(SICI)1096-987X(199903)20:4 < 383::AID-JCC1 > 3.0.CO;2-M
  • Rondeau, P., Navarra, G., Cacciabaudo, F., Leone, M., Bourdon, E., & Militello, V. (2010). Thermal aggregation of glycated bovine serum albumin. Biochimica et Biophysica Acta, 1804(4), 789–798. https://doi.org/10.1016/j.bbapap.2009.12.003
  • Roufegarinejad, L., Jahanban‐Esfahlan, A., Sanaz Sajed‐Amin, S., Vahid Panahi‐Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition: JMR, 31(7), e2704. https://doi.org/10.1002/jmr.2704
  • Satish, L., Millan, S., Das, S., Jena, S., & Sahoo, H. (2017). Thermal aggregation of bovine serum albumin in conventional buffers: An insight into molecular level interactions. Journal of Solution Chemistry, 46(4), 831–848. https://doi.org/10.1007/s10953-017-0612-0
  • Shamsi, A., Ahmed, A., Khan, M. S., Husain, F. M., & Bano, B. (2020). Rosmarinic acid restrains protein glycation and aggregation in human serum albumin: Multi spectroscopic and microscopic insight - possible therapeutics targeting diseases. International Journal of Biological Macromolecules, 161, 187–193. https://doi.org/10.1016/j.ijbiomac.2020.06.048
  • Shi, J. H.,Wang, Q.,Pan, D. Q.,Liu, T. T., &Jiang, M. (2017). Characterization of interactions of simvastatin, pravastatin, fluvastatin, and pitavastatin with bovine serum albumin: multiple spectroscopic and molecular docking. Journal of Biomolecular Structure and Dynamics, 35(7), 1529–1546. https://doi.org/10.1080/07391102.2016.1188416
  • Togashi, D. M., & Ryder, A. G. (2008). A fluorescence analysis of ANS bound to bovine serum albumin: Binding properties revisited by using energy transfer. Journal of Fluorescence, 18(2), 519–526. https://doi.org/10.1007/s10895-007-0294-x
  • Yasseen, Z. J., Hammad, J. H., & Altalla, H. A. (2014). Thermodynamic analysis of thymoquinone binding to human serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 124, 677–681. https://doi.org/10.1016/j.saa.2013.12.112
  • Yin, Z., Song, Y., & Rehse, P. H. (2013). Thymoquinone blocks pSer/pThr recognition by Plk1 polo-box domain as a phosphate mimic. ACS Chemical Biology, 8(2), 303–308. https://doi.org/10.1021/cb3004379

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.