167
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Role of the transfer ribonucleic acid (tRNA) bound magnesium ions in the charging step of aminoacylation reaction in the glutamyl tRNA synthetase and the seryl tRNA synthetase bound with cognate tRNA

&
Pages 8538-8559 | Received 06 Apr 2020, Accepted 31 Mar 2021, Published online: 24 Apr 2021

References

  • Airas, R. K. (1996). Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. European Journal of Biochemistry, 240(1), 223–231. https://doi.org/10.1111/j.1432-1033.1996.0223h.x
  • Airas, R. K. (2007). Magnesium dependence of the measured equilibrium constants of aminoacyl-tRNA synthetases. Biophysical Chemistry, 131(1–3), 29–35. https://doi.org/10.1016/j.bpc.2007.08.006
  • Alexander, R. W., Eargle, J., & Luthey-Schulten, Z. (2010). Experimental and computational determination of tRNA dynamics. FEBS Letters, 584(2), 376–386. https://doi.org/10.1016/j.febslet.2009.11.061
  • Allnér, O., Nilsson, L., & Villa, A. (2012 ) Magnesium ion-water coordination and exchange in biomolecular simulations. Journal of Chemical Theory and Computation, 8(4), 1493–1502. https://doi.org/10.1021/ct3000734
  • Baker, N.A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J.A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences U S A, 98, 10037–10041.
  • Barducci, A., Bussi, G., & Parrinello, M. (2008). Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, 100(2), 020603. https://doi.org/10.1103/PhysRevLett.100.020603
  • Beglov, D. & Roux, B. (1994). Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations, Journal of Chemical Physics, 100 (12), 9050–9063. https://doi.org/10.1063/1.466711
  • Bilokapic, S., Maier, T., Ahel, D., Gruic-Sovulj, I., Söll, D., Weygand-Durasevic, I., & Ban, N. (2006). Structure of the unusual seryl-tRNA synthetase reveals a distinct zinc-dependent mode of substrate recognition. The EMBO Journal, 25(11), 2498–2509. https://doi.org/10.1038/sj.emboj.7601129
  • Biou, V., Yaremchuk, A., Tukalo, M., & Cusack, S. (1994) The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNASer. Science, 263(5152), 1404–1410. https://doi.org/10.1126/science.8128220
  • Bowman, J. C., Lenz, T. L., Hud, N. V., & Williams, L. D. (2012). Cations in charge: Magnesium ions in RNA folding and catalysis. Current Opinion in Structural Biology, 22(3), 262–272. https://doi.org/10.1016/j.sbi.2012.04.006
  • Bullock, T. L., Rodriguez-Hernandez, A., Corigliano, E. M., & Perona, J. J. (2008). A Rationally engineered misacylating aminoacyl-tRNA synthetase. Proceedings of the National Academy of Sciences U S A, 105, 7428–7433.
  • Carr, A. C., Igloi, G. L., Penzer, G. R., & Plumbridge, J. A. (1975). The effects of spermine and Mg2+ on the catalytic mechanism of isoleucine: TRNA ligase. European Journal of Biochemistry, 54(1), 169–173. https://doi.org/10.1111/j.1432-1033.1975.tb04126.x
  • Carter, C. W. (1993). Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annual Review of Biochemistry, 62, 715–748. https://doi.org/10.1146/annurev.bi.62.070193.003435
  • Case, D. A., Darden, T. A., Cheatham, III, T. E., Simmerling, C. L., Wang, J., Duke, R. E., … Kollman, P. A. (2010). AMBER 11. University of California.
  • Cole, F. X., & Schimmel, P. R. (1970). Isoleucyl transfer ribonucleic acid synthetase. The role of magnesium in amino acid activation. Biochemistry, 9(16), 3143–3148. https://doi.org/10.1021/bi00818a005
  • Cunha, R. A., & Bussi, G. (2017). Unraveling Mg2+-RNA binding with atomistic molecular dynamics. RNA (New York, N.Y.), 23(5), 628–638. https://doi.org/10.1261/rna.060079.116
  • DeLano, W. L. (2002). The pymol molecular graphics system, Version 1. DeLano Scientific.
  • Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J., & Jorgensen, W. L. (2017a). LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands. Nucleic Acids Research, 45, W331–W336. https://doi.org/10.1093/nar/gkx312
  • Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J., & Jorgensen, W. L. (2017b). 1.14*CM1A-LBCC: Localized bond-charge corrected CM1A charges for condensed-phase simulations. The Journal of Physical Chemistry B, 15, 121, 3864–3870. https://doi.org/10.1021/acs.jpcb.7b00272
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32, W665–W667 (Web Server issue). https://doi.org/10.1093/nar/gkh381
  • Draper, D. E. (2004). A guide to ions and RNA structure. RNA (New York, N.Y.), 10(3), 335–343. https://doi.org/10.1261/rna.5205404
  • Draper, D. E. (2008). RNA folding: Thermodynamic and molecular descriptions of the roles of ions. Biophysical Journal, 95(12), 5489–5495. https://doi.org/10.1529/biophysj.108.131813
  • Dutta Banik, S., & Nandi, N. (2010). Aminoacylation reaction in the histidyl-tRNA synthetase: Fidelity of the activation step. The Journal of Physical Chemistry B, 114(6), 2301–2311. https://doi.org/10.1021/jp910730s
  • Dutta Banik, S., & Nandi, N. (2012a). Architectonics of active sites: Life processes at nanodimensions. In A. Katsuhiko (Ed.), Manipulation of nanoscale material: An introduction to nanoarchitectonics (pp. 213–241). Royal Society of Chemistry.
  • Dutta Banik, S., & Nandi, N. (2012b). Mechanism of the activation step of the aminoacylation reaction: A significant difference between class I and class II synthetases. Journal of Biomolecular Structure & Dynamics, 30(6), 701–715. https://doi.org/10.1080/07391102.2012.689701
  • Dutta, S., Choudhury, K., Dutta Banik, S., & Nandi, N. (2014). Active site nanospace of aminoacyl tRNA synthetase: Difference between the class I and class II synthetases. Journal of Nanoscience and Nanotechnology, 14(3), 2280–2298. https://doi.org/10.1166/jnn.2014.8534
  • Dutta, S., & Nandi, N. (2015). Dynamics of the active sites of dimeric seryl tRNA synthetase from Methanopyrus kandleri. The Journal of Physical Chemistry B, 119(34), 10832–10848. https://doi.org/10.1021/jp511585w
  • Dutta, S., Kundu, S., Saha, A., & Nandi, N. (2018). Dynamics of the active site loops in catalyzing aminoacylation reaction in seryl and histidyl tRNA synthetases. Journal of Biomolecular Structure & Dynamics, 36(4), 878–892. https://doi.org/10.1080/07391102.2017.1301272
  • Dutta, S. (2018). Computational study of structure and dynamics of Class I and Class II aminoacyl tRNA synthetases. [Doctoral thesis]. University of Kalyani.
  • Dutta, S., & Nandi, N. (2019). Classical molecular dynamics simulation of seryl tRNA synthetase and threonyl tRNA synthetase bound with tRNA and aminoacyl adenylate. Journal of Biomolecular Structure & Dynamics, 37(2), 336–358. https://doi.org/10.1080/07391102.2018.1426498
  • Echols, N., Morshed, N., Afonine, P. V., McCoy, A. J., Miller, M. D., Read, R. J., Richardson, J. S., Terwilliger, T. C., & Adams, P. D. (2014) Automated identification of elemental ions in macromolecular crystal structures. Acta Crystallographica, Section D: Biological Crystallography, D70, 1104–1114.
  • Foloppe, N., & MacKerell, A. D., Jr. (2000). All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. Journal of Computational Chemistry, 21(2), 86–104. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G
  • Gruić-Sovulj, I., Rokov-Plavec, J., Močibob, M., Kamenski, T., & Weygand-Duraševic, I. (2004). Stability of the complex between yeast seryl-tRNA synthetase and tRNASer under different electrophoretic conditions. Croatica Chemica Acta, 77, 599–604.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jorgensen, W. L., & Tirado-Rives, J. (2005). Potential energy functions for atomic-level simulations of water and organic and biomolecular systems. Proceedings of the National Academy of Sciences U S A, 102, 6665–6670.
  • Lamoureux G, Roux B. (2006). Absolute hydration free energy scale for alkali and halide ions established from simulations with a polarizable force field. The Journal of Physical Chemistry B, 110(7), 3308–3322. https://doi.org/10.1021/jp056043p
  • Lu, X.-J., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31(17), 5108–5121. https://doi.org/10.1093/nar/gkg680
  • Lu, X.-J.; Olson, W. K. (2008). 3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols, 3(7), 1213–1227. https://doi.org/10.1038/nprot.2008.104
  • MacKerell, A. D.; Banavali, N. K. (2000). All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. Journal of Computational Chemistry, 21(2), 105–120. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H, Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., Roux, B., Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • MacKerell, A. D. Jr., Feig, M., Brooks, III, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25 (11), 1400–1405. https://doi.org/10.1002/jcc.20065
  • Misra, V. K., & Draper, D. E. (2001). A thermodynamic framework for Mg2+ binding to RNA. Proceedings of the National Academy of Sciences U S A, 98, 12456–12461.
  • Nguyen, H. T., Hori, N., & Thirumalai, D. (2019) Theory and simulations for RNA folding in mixtures of monovalent and divalent cations. Proceedings of the National Academy of Sciences U S A, 116, 21022–21030.
  • Perona, J. J., & Gruic-Sovulj, I. (2014). Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Topics in Current Chemistry, 344, 1–41. https://doi.org/10.1007/128_2013_456
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26 (16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., Kalé, L. V., Schulten, K., & Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153 (4), 044130–044133. https://doi.org/10.1063/5.0014475
  • Quigley, G. J., Teeter, M. M., & Rich, A. (1978). Structural analysis of spermine and magnesium ion binding to yeast phenylalanine-transfer RNA. Proceedings of the National Academy of Sciences U S A, 75, 64–68.
  • Santi, D. V., & Webster, R. W. Jr.(1975). The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Journal of Biological Chemistry, 250(10), 3874–3877. https://doi.org/10.1016/S0021-9258(19)41479-8
  • Schimmel, P. R., & Söll, D. (1979). Aminoacyl-tRNA synthetases: General features and recognition of transfer RNAs. Annual Review of Biochemistry, 48(1), 601–648. https://doi.org/10.1146/annurev.bi.48.070179.003125
  • Schimmel, P. (1987). Aminoacyl tRNA synthetases: General scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annual Review of Biochemistry, 56, 125–158. https://doi.org/10.1146/annurev.bi.56.070187.001013
  • Sekine, S., Nureki, O., Dubois, D. Y., Bernier, S., Chenevert, R., Lapointe, J., Vassylyev, D. G., & Yokoyama, S. (2003). ATP Binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. The EMBO Journal, 22(3), 676–688. https://doi.org/10.1093/emboj/cdg053
  • Sekine, S., Nureki, O., Shimada, A., Vassylyev, D. G., & Yokoyama, S. (2001). Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nature Structural Biology, 8(3), 203–206. https://doi.org/10.1038/84927
  • Serebrov, V., Clarke, R. J., Gross, H. J., & Kisselev, L. (2001). Mg2+-induced tRNA folding. Biochemistry, 40(22), 6688–6698. https://doi.org/10.1021/bi002241p
  • Takeda, Y., & Ogiso, Y. (1976). Reconfirmation of replacement of magnesium ion requirement by polyamines in isoleucyl-tRNA formation in Escherichia coli. FEBS Letters, 66(2), 332–335. https://doi.org/10.1016/0014-5793(76)80533-9
  • Thiebe, R. (1975). Aminoacylation of tRNA: Magnesium requirement and spermidine effect. FEBS Letters, 51(1–2), 259–261. https://doi.org/10.1016/0014-5793(75)80901-X
  • Thiebe, R. (1977). Magnesium ions still necessary in isoleucyl-tRNA formation. FEBS Letters, 79(1), 212–214. https://doi.org/10.1016/0014-5793(77)80386-4
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tworowski, D., Feldman, A. V., & Safro, M. G. (2005). Electrostatic potential of aminoacyl-tRNA synthetase navigates tRNA on its pathway to the binding site. Journal of Molecular Biology, 350(5), 866–882. https://doi.org/10.1016/j.jmb.2005.05.051
  • Tworowski, D. & Safro, M. (2003). The long-range electrostatic interactions control tRNA-aminoacyl-tRNA synthetase complex formation. Protein Science: A Publication of the Protein Society, 12(6), 1247–1251. https://doi.org/10.1110/ps.0301203
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157−1173. https://doi.org/10.1002/jcc.20035
  • Yu, H., Whitfield T. W., Harder E., Lamoureux G., Vorobyov, I., Anisimov, V. M., MacKerell, A. D., Jr., & Roux, B. (2010) Simulating monovalent and divalent ions in aqueous solution using a drude polarizable force field. Journal of Chemical Theory and Computation, 6(3), 774–786. https://doi.org/10.1021/ct900576a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.