669
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8725-8739 | Received 04 Jan 2021, Accepted 08 Apr 2021, Published online: 03 May 2021

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle‐mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Auf Dem Keller, U., Kümin, A., Braun, S., & Werner, S. (2006). Reactive oxygen species and their detoxification in healing skin wounds. Journal of Investigative Dermatology Symposium Proceedings, 11, 106–111.
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bernier-Villamor, L., Navarro, E., Sevilla, F., & Lázaro, J.-J. (2004). Cloning and characterization of a 2-Cys peroxiredoxin from Pisum sativum. Journal of Experimental Botany, 55(406), 2191–2199. https://doi.org/10.1093/jxb/erh238
  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
  • Boina, D. R., & Bloomquist, J. R. (2015). Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus. Pest Management Science, 71(6), 808–823. https://doi.org/10.1002/ps.3957
  • Bové, J. M. (2006). Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology, 7–37. https://www.jstor.org/stable/41998278
  • Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., & Rhee, S. G. (1994). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: Alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proceedings of the National Academy of Sciences, 91(15), 7017–7021. https://doi.org/10.1073/pnas.91.15.7017
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Biological Crystallography, 66(1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Humana Press.
  • De Vries, S. J., Van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883. https://doi.org/10.1038/nprot.2010.32
  • DeLano, W. L. (2002). The pymol molecular graphics system. http://www.pymol.org
  • Dhankhar, P., Dalal, V., Kotra, D. G., & Kumar, P. (2020). In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience (Landmark Edition), 25, 1337–1360. ), https://doi.org/10.2741/4859
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590
  • Dhankhar, P., Singh, V., & Tomar, S. (2020). Computational guided identification of novel potent inhibitors of NTD-N-protein of SARS-CoV-2. https://doi.org/10.26434/chemrxiv.12280532
  • Dubbs, J. M., & Mongkolsuk, S. (2007). Peroxiredoxins in bacterial antioxidant defense. In L. Flohe & J. Robin Harris (Eds.), Peroxiredoxin systems (pp. 143–193). Springer.
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404.
  • Fiser, A., & Sali, A. (2003). ModLoop: Automated modeling of loops in protein structures. Bioinformatics, 19(18), 2500–2501. https://doi.org/10.1093/bioinformatics/btg362
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., & Li, X. (2016). Gaussian 16, revision C. 01. Gaussian, Inc.
  • Gouet, P., Courcelle, E., Stuart, D. I., & M√© toz, F. (1999). ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics (Oxford, England), 15(4), 305–308. https://doi.org/10.1093/bioinformatics/15.4.305
  • Guex, N., & Peitsch, M. C. (1997). SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling. electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gunsteren, W. F., Billeter, S. R., Eising, A. A., Hünenberger, P. H., Krüger, P. K. H. C., Mark, A. E., Scott, W. R. P., & Tironi, I. G. (1996). Biomolecular simulation: The GROMOS96 manual and user guide (Vol. 86, pp. 1–1044). Verlag Der Fachvereine Hochschulverlag AG an Der ETH Zurich.
  • Halbert, S. E., & Manjunath, K. L. (2004). Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Florida Entomologist, 87(3), 330–353. https://doi.org/10.1653/0015-4040(2004)087[0330:ACPSPA]2.0.CO;2
  • Hall, A., Karplus, P. A., & Poole, L. B. (2009). Typical 2‐Cys peroxiredoxins–structures, mechanisms and functions. The FEBS Journal, 276(9), 2469–2477. https://doi.org/10.1111/j.1742-4658.2009.06985.x
  • Hall, A., Nelson, K., Poole, L. B., & Karplus, P. A. (2011). Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxidants & Redox Signaling, 15(3), 795–815. https://doi.org/10.1089/ars.2010.3624
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Ighodaro, O., & Akinloye, O. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
  • Ishida, Y., Takikawa, M., Suzuki, T., Nagahama, M., & Ogasawara, Y. (2014). Irreversible hyperoxidation of peroxiredoxin 2 is caused by tert-butyl hydroperoxide in human red blood cells. FEBS Open Bio., 4, 848–852. https://doi.org/10.1016/j.fob.2014.10.003
  • Jagoueix, S., Bove, J-m., & Garnier, M. (1994). The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of the Proteobacteria. International Journal of Systematic and Evolutionary Microbiology, 44(3), 379–386. https://doi.org/10.1099/00207713-44-3-379
  • Jara, M., Vivancos, A. P., Calvo, I. A., Moldón, A., Sansó, M., & Hidalgo, E. (2007). The peroxiredoxin Tpx1 is essential as a H2O2 scavenger during aerobic growth in fission yeast. Molecular Biology of the Cell, 18(6), 2288–2295. https://doi.org/10.1091/mbc.e06-11-1039
  • Kesari, P., Pratap, S., Dhankhar, P., Dalal, V., Mishra, M., Singh, P. K., Chauhan, H., & Kumar, P. (2020). Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-58138-9
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., & Zaslavsky, L. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Kinnula, V. L., Soini, Y., Kvist-Mäkelä, K., Savolainen, E.-R., & Koistinen, P. (2002). Antioxidant defense mechanisms in human neutrophils. Antioxidants and Redox Signaling, 4(1), 27–34. https://doi.org/10.1089/152308602753625825
  • Kučera, O., Endlicher, R., Roušar, T., Lotková, H., Garnol, T., Drahota, Z., & Červinková, Z. (2014). The effect of tert-butyl hydroperoxide-induced oxidative stress on lean and steatotic rat hepatocytes in vitro. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2014/752506
  • Kumar, P., Dalal, V., Kokane, A., Singh, S., Lonare, S., Kaur, H., … Sharma, A. K. (2020). Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). International Journal of Biological Macromolecules, 147, 1228–1238. https://doi.org/10.1016/j.ijbiomac.2019.09.250
  • Kumar, P., Dalal, V., Sharma, N., Kokane, S., Singh, S., Lonare, S., Kaur, H., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2020). Characterization of the heavy metal binding properties of periplasmic metal uptake protein CLas-ZnuA2. Metallomics, 12(2), 280–289. https://doi.org/10.1039/C9MT00200F
  • Kumari, N., Dalal, V., Kumar, P., & Rath, S. N. (2020). Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1839558
  • Kumari, R., Dhankhar, P., & Dalal, V. (2021). Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. Journal of Molecular Graphics and Modelling, 105, 107870. https://doi.org/10.1016/j.jmgm.2021.107870
  • Kumari, R., Kumar, R., Source Drug Discovery Consortium, & Lynn, A. & (2014). g_mmpbsa□ A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., Roel-Touris, J., Melquiond, A. S. J., Geng, C., Schaarschmidt, J., Xue, L. C., Vangone, A., & Bonvin, A. M. J. J. (2018). Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 32(1), 175–185. https://doi.org/10.1007/s10822-017-0049-y
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785. https://doi.org/10.1103/PhysRevB.37.785
  • Li, X., Zhao, C., Li, H., Zhu, W., Ma, H., & Feng, H. (2009). Bacterial impact on H2O2 accumulation during the interaction between Xanthomonas and rice. Plant Production Science, 12(2), 133–138. https://doi.org/10.1626/pps.12.133
  • Malik, A., Dalal, V., Ankri, S., & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nandi, A., Yan, L.-J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity. https://doi.org/10.1155/2019/9613090
  • Nelson, K. J., Knutson, S. T., Soito, L., Klomsiri, C., Poole, L. B., & Fetrow, J. S. (2011). Analysis of the peroxiredoxin family: Using active‐site structure and sequence information for global classification and residue analysis. Proteins: Structure, Function, and Bioinformatics, 79(3), 947–964. https://doi.org/10.1002/prot.22936
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Pandit, S., Dalal, V., & Mishra, G. (2018). Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiology and Biochemistry, 128, 178–184. https://doi.org/10.1016/j.plaphy.2018.04.039
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Perkins, A., Poole, L. B., & Karplus, P. A. (2014). Tuning of peroxiredoxin catalysis for various physiological roles. Biochemistry, 53(49), 7693–7705. https://doi.org/10.1021/bi5013222
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rhee, S. G. (2016). Overview on peroxiredoxin. Molecules and Cells, 39(1), 1. https://doi.org/10.14348/molcells.2016.2368
  • Saini, G., Dalal, V., Gupta, D. N., Sharma, N., Kumar, P., & Sharma, A. K. (2021). A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Molecular Simulation. https://doi.org/10.1080/08927022.2021.1888948
  • Saini, G., Dalal, V., Savita, B. K., Sharma, N., Kumar, P., & Sharma, A. K. (2019). Molecular docking and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus. Journal of Molecular Graphics and Modelling, 92, 329–340. https://doi.org/10.1016/j.jmgm.2019.08.012
  • Saini, G., Sharma, N., Dalal, V., Warghane, A., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2018). The analysis of subtle internal communications through mutation studies in periplasmic metal uptake protein CLas-ZnuA2. Journal of Structural Biology, 204(2), 228–239. https://doi.org/10.1016/j.jsb.2018.08.013
  • Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7(1), 539. https://doi.org/10.1038/msb.2011.75
  • Singh, N., Dalal, V., & Kumar, P. (2018). Structure based mimicking of Phthalic acid esters (PAEs) and inhibition of hACMSD, an important enzyme of the tryptophan kynurenine metabolism pathway. International Journal of Biological Macromolecules, 108, 214–224. https://doi.org/10.1016/j.ijbiomac.2017.12.005
  • Singh, N., Dalal, V., & Kumar, P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Singh, N., Dalal, V., Kumar, V., Sharma, M., & Kumar, P. (2019). Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. Journal of Molecular Graphics and Modelling, 90, 161–170. https://doi.org/10.1016/j.jmgm.2019.05.002
  • Singh, N., Dalal, V., Mahto, J. K., & Kumar, P. (2017). Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. Journal of Hazardous Materials, 338, 11–22. https://doi.org/10.1016/j.jhazmat.2017.04.055
  • Singh, A., Kumar, N., Tomar, P. P., Bhose, S., Ghosh, D. K., Roy, P., & Sharma, A. K. (2017). Characterization of a bacterioferritin comigratory protein family 1-Cys peroxiredoxin from Candidatus Liberibacter asiaticus. Protoplasma, 254(4), 1675–1691. https://doi.org/10.1007/s00709-016-1062-z
  • Texeira, D., Ayres, J., Kitajima, E., Danet, L., Jagoueix-Eveillard, S., Saillard, C., & Bové, J. (2005). First report of a huanglongbing-like disease of citrus in São Paulo State, Brazil and association of a new Liberibacter species,“Candidatus Liberibacter americanus”, with the disease. Plant Disease, 89(1), 107–107. https://doi.org/10.1094/PD-89-0107A
  • Toledano, M. B., & Huang, B. (2016). Microbial 2-Cys peroxiredoxins: Insights into their complex physiological roles. Molecules and Cells, 39(1), 31. https://doi.org/10.14348/molcells.2016.2326
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science, 12(5), 1073–1086. https://doi.org/10.1110/ps.0236803
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(suppl_2), W407–W410. https://doi.org/10.1016/S0076-6879(97)77022-8
  • Wood, Z. A., Schröder, E., Harris, J. R., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends in Biochemical Sciences, 28(1), 32–40. https://doi.org/10.1016/S0968-0004(02)00003-8
  • Xie, X., He, Z., Chen, N., Tang, Z., Wang, Q., & Cai, Y. (2019). The roles of environmental factors in regulation of oxidative stress in plant. BioMed Research International, 2019. https://doi.org/10.1155/2019/9732325
  • You, J., & Chan, Z. (2015). ROS regulation during abiotic stress responses in crop plants. Frontiers in Plant Science, 6, 1092. https://doi.org/10.3389/fpls.2015.01092

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.