142
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structure, DFT studies and evaluation of catechol oxidase (CO) mimic activity of mononuclear Co(II) complexes derived from aminoalcohols: an experimental and theoretical approach

, , , , , , & show all
Pages 8740-8751 | Received 17 Feb 2021, Accepted 08 Apr 2021, Published online: 06 May 2021

References

  • Adhikary, J., Chakraborty, A., Dasgupta, S., Chattopadhyay, S. K., Kruszynski, R., Trzesowska-Kruszynska, A., Stepanović, S., Gruden-Pavlović, M., Swart, M., & Das, D. (2016). Dalton Transactions, 45, 12409–12422. https://doi.org/10.1039/C6DT00625F
  • Ahamad, M. N., Kumar, M., Ansari, A., Mantasha, I., Ahmad, M., & Shahid, M. (2019). Synthesis, characterization, theoretical studies and catecholase like activities of [MO6] type complexes. New Journal of Chemistry, 43(35), 14074–14083. https://doi.org/10.1039/C9NJ03729B
  • Akhtar, M. N., AlDamen, M. A., Zierkiewicz, W., Michalczyk, M., Khalid, M., Mantasha, I., & Shahid, M. (2020). Synthesis, crystal structure, DFT calculations, molecular docking study and Hirshfeld surface analysis of alkoxido-bridged dinuclear iron(III) complex. Research on Chemical Intermediates, 46, 4155.
  • Anekwea, J., Hammerschmidta, A., Rompelb, A., & Krebs, B. (2006). Altering the Activity of Catechol Oxidase Model Compounds by Electronic Influence on the Copper Core. Zeitschrift für anorganische und allgemeine Chemie, 632, 1057.
  • Ansari, I. A., Sama, F., Shahid, M., Khalid, M., Sharma, P. K., Ahmad, M., & Siddiqi, Z. A. (2016). Synthesis, spectral characterization, x-ray and magnetic studies of oxo-bridged tetranuclear coordination polymers of cobalt. Journal of Inorganic and Organometallic Polymers and Materials, 26(1), 178–189. https://doi.org/10.1007/s10904-015-0298-y
  • Banerjee, A., Guha, A., Adhikary, J., Khan, A., Manna, K., Dey, S., Zangrando, E., & Das, D. (2013). Dinuclear cobalt(II) complexes of Schiff-base compartmental ligands: Syntheses, crystal structure and bio-relevant catalytic activities. Polyhedron, 60, 102.
  • Banerjee, A., Sarkar, S., Chopra, D., Colacio, E., & Rajak, K. K. (2008). Binuclear copper(II) complexes with N4O3 coordinating heptadentate ligand: Synthesis, structure, magnetic properties, density-functional theory study, and catecholase activity. Inorganic Chemistry, 47(10), 4023–4031. https://doi.org/10.1021/ic7015935
  • Becke, A. D. (1993). A New Mixing of Hartree-Fock and Local Density-Functional Theories. The Journal of Chemical Physics, 98, 5648.
  • Belle, C., Beguin, C., Gautier-Luneau, I., Hamman, S., Philouze, C., Pierre, J. L., Thomas, F., Torelli, S., Saint-Aman, E., & Bonin, M. (2002). Dicopper(II) complexes of H-BPMP-type ligands: PH-induced changes of redox, spectroscopic ((19)F NMR studies of fluorinated complexes), structural properties, and catecholase activities. Inorganic Chemistry, 41(3), 479–491. https://doi.org/10.1021/ic010534g
  • Bharathi, K. S., Sreedaran, S., Rahiman, A. K., & Narayanan, V. (2012). Synthesis and characterization of new unsymmetrical 'side-off' tetra and hexa coordinate homobinuclear Cu(II) and heterobinuclear Cu(II)-Zn(II) complexes: Magnetic, electrochemical and kinetic studies. Spectrochimica Acta Part A, 94, 334.
  • Bhowmik, P., Nayek, H. P., Corbella, M., Aliaga-Alcalde, N., & Chattopadhyay, S. (2011). Control of molecular architecture by steric factors: Mononuclear vs polynuclear manganese(III) compounds with tetradentate N2O2 donor Schiff bases. Dalton Transactions (Cambridge, England: 2003), 40(31), 7916–7926. https://doi.org/10.1039/c0dt01723j
  • Boulemche, H., Anak, B., Djedouani, A., Touzani, R., François, M., Fleutot, S., & Rabilloud, F. (2019). Synthesis, X-ray crystallography, computational studies and catecholase activity of new zwitterionic Schiff base derivatives. Journal of Molecular Structure, 1178, 606.
  • Celik, D., & Kose, M. (2019). Triazine based Mn (II) and Mn (II)/Ln (III) complexes: Synthesis, characterization and catecholase activities. Applied Organometallic Chemistry, 33, 4721.
  • Chakraborty, P., Majumder, I., Banu, K. S., Ghosh, B., Kara, H., Zangrando, E., & Das, D. (2016). Mn(II) complexes of different nuclearity: Synthesis, characterization and catecholase-like activity. Dalton Transactions, 45(2), 742–752. https://doi.org/10.1039/C5DT03659C
  • Das, L. K., Biswas, A., Kinyon, J. S., Dalal, N. S., Zhou, H., & Ghosh, A. (2013). Di-, tri-, and tetranuclear nickel(II) complexes with oximato bridges: Magnetism and catecholase-like activity of two tetranuclear complexes possessing rhombic topology. Inorganic Chemistry, 52(20), 11744–11757. https://doi.org/10.1021/ic401020m
  • Das, M., Kundu, B. K., Tiwari, R., Mandal, P., Nayak, D., Ganguly, R., & Mukhopadhyay, S. (2018). Investigation on chemical protease, nuclease and catecholase activity of two copper complexes with flexidentate Schiff base ligands. Inorganica Chimica Acta, 469, 111.
  • Dermitzaki, D., Raptopoulou, C. P., Psycharis, V., Escuer, A., Perlepes, S. P., & Stamatatos, T. C. (2015). Nonemployed simple carboxylate ions in well-investigated areas of heterometallic carboxylate cluster chemistry: A new family of {Cu(II)4Ln(III)8} complexes bearing tert-butylacetate bridging ligands. Inorganic Chemistry, 54(15), 7555–7561. https://doi.org/10.1021/acs.inorgchem.5b01179
  • Dey, S. K., Mitra, P., & Mukherjee, A. (2015). Influence of solvent in solvothermal syntheses: Change of nuclearity in mixed valence CoII/III complexes of a O-Donor-rich schiff base ligand. Crystal Growth & Design, 15, 706.
  • Dey, S. K., & Mukherjee, A. (2014). New Journal of Chemistry, 38, 4985.
  • Dey, S. K., & Mukherjee, A. (2016). Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. Coordination Chemistry Reviews, 310, 80–115. https://doi.org/10.1016/j.ccr.2015.11.002
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. The Journal of Chemical Physics, 54, 724.
  • Dolai, S., Das, K., Bhunia, A., Bertolasi, V., & Manna, S. C. (2018). p‐Toluate‐bridged dinuclear Cu(II) complexes in combination with tridentate chelating ligand: Crystal structure, density functional theory calculation, DNA/protein binding and catecholase activity. Applied Organometallic Chemistry, 32, 4506.
  • Dunning, T. H., Jr., & Hay, P. J. (1976). In modern theoretical chemistry H. F. Schaefer III, Ed.). (Vol. 3, p. 1, Plenum.
  • Eicken, C., Krebs, B., & Sacchettini, J. C. (1999). Catechol oxidase—structure and activity. Current Opinion in Structural Biology, 9, 677.
  • Frisch, M. J. (2009). Gaussian 09, revision 02. Gaussian, Inc.
  • Ghosh, A. K., Pait, M., Shatruk, M., Bertolasi, V., & Ray, D. (2014). Self-assembly of a [Ni8] carbonate cube incorporating four μ4-carbonato linkers through fixation of atmospheric CO2 by ligated [Ni2] complexes. Dalton Transactions, 43, 1970–1973. https://doi.org/10.1039/C3DT52999A
  • González-Sebastián, L., Ugalde-Saldívar, V. M., Mijangos, E., Quijano, M. R. M., Ortiz-Frade, L., & Gasque, L. (2010). Solvent and pH effects on the redox behavior and catecholase activity of a dicopper complex with distant metal centers. Journal of Inorganic Biochemistry, 104(10), 1112–1118. https://doi.org/10.1016/j.jinorgbio.2010.06.010
  • Harmalker, S., Jones, S. E., & Sawyer, D. T. (1983). Electrochemical and spectroscopic studies of 3,5-di-tert-butylcatecholato and 3,5-di-tert-butyl-o-semiquinonato complexes of copper(II). Inorganic Chemistry, 22, 2790.
  • Hay, P. J., & Wadt, W. R. (1985a). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82, 270–283.
  • Hay, P. J., & Wadt, W. R. (1985b). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82, 299.
  • Hazari, A., Kanta Das, L., Kadam, R. M., Bauza, A., Frontera, A., & Ghosh, A. (2015). Unprecedented structural variations in trinuclear mixed valence Co(II/III) complexes: Theoretical studies, pnicogen bonding interactions and catecholase-like activities. Dalton Transactions (Cambridge, England: 2003), 44(8), 3862–3876. https://doi.org/10.1039/c4dt03446e
  • Ibers, J. A., & Hamilton, W. C. (1974). International tables for x-ray crystallography (Vol. IV). Kynoch Press.
  • Indira, S., Vinoth, G., Bharathi, M., Bharathi, S., Rahiman, A. K., & Bharathi, K. S. (2019). Catechol oxidase and phenoxazinone synthase mimicking activities of mononuclear Fe(III) and Co(III) complexes of amino-bis(phenolate)-based mixed ligands: Synthesis, spectral and electrochemical studies. Inorganica Chimica Acta, 495, 118988. https://doi.org/10.1016/j.ica.2019.118988
  • Jana, A., Aliaga-Alcalde, N., Ruiz, E., & Mohanta, S. (2013). Structures, magnetochemistry, spectroscopy, theoretical study, and catechol oxidase activity of dinuclear and dimer-of-dinuclear mixed-valence Mn(III)Mn(II) complexes derived from a macrocyclic ligand. Inorganic Chemistry, 52(13), 7732–7746. https://doi.org/10.1021/ic400916h
  • Kao, C.-H., Wei, H.-H., Liu, Y.-H., Lee, G.-H., Wang, Y., & Lee, C.-J. (2001). Structural correlation of catecholase-like activities of oxy-bridged dinuclear copper(II) complexes. Journal of Inorganic Biochemistry, 84(3–4), 171–178. https://doi.org/10.1016/s0162-0134(01)00170-2
  • Katsoulakou, E., Dermitzaki, D., Konidaris, K. F., Moushi, E. E., Raptopoulou, C. P., Psycharis, V., Tasiopoulos, A. J., Bekiari, V., Zoupa, E. M., Perlepes, S. P., & Stamatatos, T. C. (2013). Hexanuclear zinc(II) carboxylate complexes from the use of pyridine-2,6-dimethanol: Synthetic, structural and photoluminescence studies. Polyhedron, 52, 467–475. https://doi.org/10.1016/j.poly.2012.08.049
  • Kitajima, N., & Moro-oka, Y. (1994). Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives. Chemical Reviews, 94, 737.
  • Koval, I. A., Gamez, P., Belle, C., Selmeczi, K., & Reedijk, J. (2006). Synthetic models of the active site of catechol oxidase: Mechanistic studies. Chemical Society Reviews, 35(9), 814. https://doi.org/10.1039/b516250p
  • Koval, I. A., Selmeczi, K., Belle, C., Philouze, C., Saint-Aman, E., Gautier-Luneau, I., Schuitema, A. M., van Vliet, M., Gamez, P., & Roubeau, O. (2006). Catecholase activity of a copper(II) complex with a macrocyclic ligand: Unraveling catalytic mechanisms. Chemistry—A European Journal, 12, 6138.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37, 785.
  • Li, X.-Y., Chen, L., Gao, L., Zhang, Y., Akogun, S. F., & Dong, W.-K. (2017a). Syntheses, crystal structures and catalytic activities of two solvent-induced homotrinuclear Co(ii) complexes with a naphthalenediol-based bis(Salamo)-type tetraoxime ligand. RSC Advances, 7, 35905.
  • Li, L. H., Dong, W. K., Zhang, Y., Akogun, S. F., & Xu, L. (2017b). Syntheses, structures and catecholase activities of homo‐ and hetero‐trinuclear cobalt(II) complexes constructed from an acyclic naphthalenediol‐based bis(Salamo)‐type ligand. Applied Organometallic Chemistry, 31, 3818.
  • Li, X.-Y., Kang, Q.-P., Liu, C., Zhang, Y., & Dong, W.-K. (2019). Structurally characterized homo-trinuclear ZnII and hetero-pentanuclear [ZnII4LnIII] complexes constructed from an octadentate bis(Salamo)-based ligand: Hirshfeld surfaces, fluorescence and catalytic properties. New Journal of Chemistry, 43, 4605.
  • Li, Y., Li, Y., Liu, X., Yang, Y., Lin, D., & Gao, Q. (2020). Synthesis, characterization and catecholase activity of transition metal complexes. Journal of Structural Chemistry, 1202, 127229.
  • Majumder, S., Mondal, S., Lemoine, P., & Mohanta, S. (2013). Dinuclear mixed-valence CoIIICoII complexes derived from a macrocyclic ligand: unique example of a CoIIICoII complex showing catecholase activity. Dalton Transactions, 42, 4561.
  • Majumder, S., Sarkar, S., Sasmal, S., Sańudo, E. C., & Mohanta, S. (2011). Heterobridged dinuclear, tetranuclear, dinuclear-based 1-D, and heptanuclear-based 1-D complexes of Copper(II) derived from a dinucleating ligand: Syntheses, structures, magnetochemistry, spectroscopy, and catecholase activity. Inorganic Chemistry, 50, 7540.
  • Mandal, L., Sasmal, S., Sparkes, H. A., Howard, J. A. K., & Mohanta, S. (2014). Crystal structure, catecholase activity and ESI-MS of a mixed valence cobalt(III)-cobalt(II) complex derived from a macrocyclic ligand: Identification/proposition of hydrogen bonded metal complex center dot center dot center dot solvent aggregates in ESI-MS. Inorganica Chimica Acta, 412, 38.
  • Mantasha, I., Hussain, S., Ahmad, M., & Shahid, M. (2020a). Two dimensional (2D) molecular frameworks for rapid and selective adsorption of hazardous aromatic dyes from aqueous phase. Separation and Purification Technology, 238, 116413.
  • Mantasha, I., Raza, M. K., Shahid, M., Ansari, A., Ahmad, M., & Khan, I. M. (2019a). Unprecedented isolation of a dinuclear tin (II) complex stabilized by pyridine‐2,6‐dimethanol: structure, DFT and in vitro screening of cytotoxic properties. Applied Organometallic Chemistry, 33, 5006.
  • Mantasha, I., Shahid, M., Ahmad, M., Rahisuddin, R., Arif, R., Tasneem, S., Sama, F., & Ansari, I. A. (2019b). Synthesis, crystal structures, photoluminescence, magnetic and antioxidant properties, and theoretical analysis of Zn(ii) and Cu(ii) complexes of an aminoalcohol ligand supported by benzoate counter anions. New Journal of Chemistry, 43, 622.
  • Mantasha, I., Shahid, M., Kumar, M., Ansari, A., Akhtar, M. N., AlDamen, M. A., Song, Y., Ahmad, M., & Khan, I. M. (2020b). Exploring solvent dependent catecholase activity in transition metal complexes: an experimental and theoretical approach. New Journal of Chemistry, 44, 1371.
  • Mantasha, I., Shahid, M., Saleh, H. A. M., Qasem, K. M. A., & Ahmad, M. (2020c). A novel sustainable metal organic framework as the ultimate aqueous phase sensor for natural hazards: detection of nitrobenzene and F− at the ppb level and rapid and selective adsorption of methylene blue. CrystEngComm, 22, 3891.
  • Merkel, M., Mçller, N., Piacenza, M., Grimme, S., Rompel, A., & Krebs, B. (2005). Less symmetrical dicopper(II) complexes as catechol oxidase models—An adjacent thioether group increases catecholase activity. Chemistry—A European Journal, 11, 1201.
  • Milios, C. J., Manoli, M., Rajaraman, G., Mishra, A., Budd, L. E., White, F., Parsons, S., Wernsdorfer, W., Christou, G., & Brechin, E. K. (2006). A family of [Mn6] complexes featuring tripodal ligands. Inorganic Chemistry, 45(17), 6782–6793. https://doi.org/10.1021/ic060676g
  • Modak, R., Sikdar, Y., Mandal, S., & Goswami, S. (2013). Syntheses, crystal structures and catecholase activity of new dinuclear and cyclic trinuclear mixed valence cobalt (II, III) complexes. Inorganic Chemistry Communications, 373, 193–196. https://doi.org/10.1016/j.inoche.2013.09.026
  • Mondal, S., Chakraborty, M., Mondal, A., Pakhira, B., Blake, A. J., Sinn, E., & Chattopadhyay, S. K. (2018). Cu(II) complexes of a tridentate N,N,O-donor Schiff base of pyridoxal: Synthesis, X-ray structures, DNA-binding properties and catecholase activity. New Journal of Chemistry, 42(12), 9588–9597. https://doi.org/10.1039/C8NJ00418H
  • Mondal, D., Ghosh, A. K., Chatterjee, A., & Ghosh, R. (2019). Synthesis and structural characterization of a dinuclear copper(II) complex with a (N,S) donor ligand: Catecholase and phenoxazinone synthase activities. Inorganica Chimica Acta, 486, 719.
  • Neese, F. (2009). The ORCA program system, version 4.0. University of Bonn.
  • O’Boyle, N. M., Tenderholt, A. L., & Langner, K. M. (2008). cclib: A library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Pait, M., Shatruk, M., & Ray, D. (2015). Anion coordination selective [Mn3] and [Mn4] assemblies: Synthesis, structural diversity, magnetic properties and catechol oxidase activity. Dalton Transactions, 44(26), 11741–11754. https://doi.org/10.1039/C5DT01157D
  • Peng, Y., Tian, C.-B., Zhang, H.-B., Li, Z.-H., Lin, P., & Du, S.-W. (2012). Synthesis, structure and magnetic study of a novel mixed-valent Co(II)10Co(III)4 shield constructed by mixed pyridine-alcoholate ligands. Dalton Transactions (Cambridge, England: 2003), 41(16), 4740–4743. https://doi.org/10.1039/c2dt12487d
  • Qiu, J.-H., Liao, Z.-R., Meng, X.-G., Zhu, L., Wang, Z.-M., & Yu, K.-B. (2005). Crystal structures and polyphenol oxidase activities of dinuclear copper(II) and cobalt(II) complexes with N,N,N′,N′-tetrakis (2′-benzimidazolylmethyl)-1,4-diethylene amino glycol ether (EGTB). Polyhedron, 24, 1617.
  • Rall, J., Wanner, M., Albrecht, M., Hornung, F. M., & Kaim, W. (1999). Sensitive valence tautomer equilibrium of paramagnetic complexes [(L)Cun+(Qn−)] (n=1 or 2; Q=Quinones) related to amine oxidase enzymes. Chemistry—A European Journal, 5, 2802.
  • Sama, F., Dhara, A. K., Akhtar, M. N., Chen, Y.-C., Tong, M.-L., Ansari, I. A., Raizada, M., Ahmad, M., Shahid, M., & Siddiqi, Z. A. (2017). Aminoalcohols and benzoates-friends or foes? Tuning nuclearity of Cu(II) complexes, studies of their structures, magnetism, and catecholase-like activities as well as performing DFT and TDDFT studies. Dalton Transactions (Cambridge, England: 2003), 46(30), 9801–9823. https://doi.org/10.1039/c7dt01571b
  • Schaefer, A., Horn, H., & Ahlrichs, R. (1992). Fully optimized contracted Gaussian basis sets for atoms Li to Kr. The Journal of Chemical Physics, 97, 2571.
  • Schaefer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100, 5829.
  • Selmeczi, K., Réglier, M., Giorgi, M., & Speier, G. (2003). Catechol oxidase activity of dicopper complexes with N-donor ligands. Coordination Chemistry Reviews, 245, 191.
  • Sheldrick, G. M. (2002). SADABS, software for empirical absorption correction, Ver. 2.05. University of Göttingen.
  • Sheldrick, G. M. (2008). SHELXL97, program for crystal structure refinement. University of Göttingen.
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C Structural Chemistry, 71(1), 3–8. https://doi.org/10.1107/S2053229614024218
  • Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G., & Min, K. S. (2011). Monomeric, trimeric, and tetrameric transition metal complexes (Mn, Fe, Co) containing N,N-bis(2-pyridylmethyl)-2-aminoethanol/-ate: Preparation, crystal structure, molecular magnetism and oxidation catalysis. Dalton Transactions (Cambridge, England: 2003), 40(21), 5762–5773. https://doi.org/10.1039/c1dt10028a
  • Singha Mahapatra, T., Basak, D., Chand, S., Lengyel, J., Shatruk, M., Bertolasi, V., & Ray, D. (2016). Competitive coordination aggregation for V-shaped [Co3] and disc-like [Co7] complexes: Synthesis, magnetic properties and catechol oxidase activity. Dalton Transactions, 45(34), 13576–13589. https://doi.org/10.1039/C6DT02494G
  • SMART & SAINT. (2003). Software reference manuals, version 6.45. Bruker Analytical X-ray Systems, Inc.
  • Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563.
  • Stallings, M. D., Morrison, M. M., & Sawyer, D. T. (1981). Redox chemistry of metal-catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products. Inorganic Chemistry, 20, 2655.
  • Stamatatos, T. C., & Christou, G. (2008). Mixed valency in polynuclear Mn II/Mn III, Mn III/Mn IV and Mn II/Mn III/Mn IV clusters: A foundation for high-spin molecules and single-molecule magnets. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1862), 113–125. https://doi.org/10.1098/rsta.2007.2144
  • Stamatatos, T. C., Vlahopoulou, G. C., Raptopoulou, C. P., Terzis, A., Escuer, A., & Perlepes, S. P. (2009). Interpretation of the magnetic properties of a compound consisting of cocrystallized Cu(II)(3) and Cu(II)(4) clusters through the targeted synthesis and study of its discrete Cu(II)(4) component. Inorganic Chemistry, 48(11), 4610–4612. https://doi.org/10.1021/ic900188k
  • Sureshbabu, P., Junaid, Q. M., Upadhyay, C., Victoria, W., Pitchavel, V., Natarajan, S., & Sabiah, S. (2019). Di and tetranuclear Cu(II) complexes with simple 2-aminoethylpyridine: Magnetic properties, phosphodiester hydrolysis, DNA binding/cleavage, cytotoxicity and catecholase activity. Polyhedron, 164, 202.
  • Taguchi, T., Stamatatos, T. C., Abboud, K. A., Jones, C. M., Poole, K. M., O’Brien, T. A., & Christou, G. (2008). New Fe4, Fe6, and Fe8 clusters of Iron(III) from the use of 2-pyridyl alcohols: Structural, magnetic, and computational characterization. Inorganic Chemistry, 47(10), 4095–4108. https://doi.org/10.1021/ic701756p
  • Than, R., Feldmann, A. A., & Krebs, B. (1999). Structural and functional studies on model compounds of purple acid phosphatases and catechol oxidases. Coordination Chemistry Reviews, 182, 211.
  • Vlahopoulou, G. C., Alexandropoulos, D. I., Raptopoulou, C. P., Perlepes, S. P., Escuer, A., & Stamatatos, T. C. (2009). A tetranuclear complex from the employment of pyridine-2,6-dimethanol in copper(II) nitrate chemistry: Synthetic, structural and magnetic studies. Polyhedron, 28(15), 3235–3242. https://doi.org/10.1016/j.poly.2009.05.047
  • Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82, 284.
  • Wang, S., Li, Y.-J., Ju, F.-F., Xu, W.-T., Kagesawa, K., Li, Y.-H., Yamashita, M., & Huang, W. (2017). The molecular and supramolecular aspects in mononuclear manganese(III) Schiff-base spin crossover complexes. Dalton Transactions (Cambridge, England: 2003), 46(33), 11063–11077. https://doi.org/10.1039/C7DT01718A
  • Winpenny, R. E. P., McCleverty, J. A., & Meyer, T. J. (2004). Comprehensive coordination chemistry III (pp. 125–7175). Elsevier.
  • XPREP. (1995). Version 5.1. Siemens Industrial Automation Inc.
  • Zhurko, G., & Zhurko, D. (2005). Lite Version Build, 8, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.