215
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

In-silico evidences on filarial cystatin as a putative ligand of human TLR4

, ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 8808-8824 | Received 20 Oct 2020, Accepted 11 Apr 2021, Published online: 06 May 2021

References

  • Aalten, D. M. F., Findlay, J. B. C., Amadei, A., & Berendsen, H. J. C. (1995). Essential dynamics of the cellular retinol-binding protein evidence for ligand-induced conformational changes. Protein Engineering, Design and Selection, 8(11), 1129–1135. https://doi.org/10.1093/protein/8.11.1129
  • Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from Western Algeria. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1763199
  • Babu, S., & Nutman, T. B. (2014). Immunology of lymphatic filariasis. Parasite Immunology, 36(8), 338–346. https://doi.org/10.1111/pim.12081
  • Bird, P. I., Trapani, J. A., & Villadangos, J. A. (2009). Endolysosomal proteases and their inhibitors in immunity. Nature Reviews Immunology, 9(12), 871–882. https://doi.org/10.1038/nri2671
  • Bisht, N., Khatri, V., Chauhan, N., & Kalyanasundaram, R. (2019). Cystatin from filarial parasites suppress the clinical symptoms and pathology of experimentally induced colitis in mice by inducing T-regulatory cells, B1-cells, and alternatively activated macrophages. Biomedicines, 7(4), 85. https://doi.org/10.3390/biomedicines7040085
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • Dhankhar, P., Dalal, V., Kotra, D. G., & Kumar, P. (2020). In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience, 25(7), 1337–1360. https://doi.org/10.2741/4859
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Goodridge, H. S., Marshall, F. A., Else, K. J., Houston, K. M., Egan, C., Al-Riyami, L., Liew, F.-Y., Harnett, W., & Harnett, M. M. (2005). Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. The Journal of Immunology, 174(1), 284–293. https://doi.org/10.4049/jimmunol.174.1.284
  • Gordon, S., & Martinez, F. O. (2010). Alternative activation of macrophages: Mechanism and functions. Immunity, 32(5), 593–604. https://doi.org/10.1016/j.immuni.2010.05.007
  • Gregory, W. F., & Maizels, R. M. (2008). Cystatins from filarial parasites: Evolution, adaptation and function in the host-parasite relationship. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1389–1398. https://doi.org/10.1016/j.biocel.2007.11.012
  • Hartmann, S., Schönemeyer, A., Sonnenburg, B., Vray, B., & Lucius, R. (2002). Cystatins of filarial nematodes up-regulate the nitric oxide production of interferon-γ-activated murine macrophages. Parasite Immunology, 24(5), 253–262. https://doi.org/10.1046/j.1365-3024.2002.00459.x
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoerauf, A., Satoguina, J., Saeftel, M., & Specht, S. (2005). Immunomodulation by filarial nematodes. Parasite Immunology, 27(10–11), 417–429. https://doi.org/10.1111/j.1365-3024.2005.00792.x
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Khan, Y., Garg, M., Gui, Q., Schadt, M., Gaikwad, A., Han, D., Yamamoto, N. A. D., Hart, P., Welte, R., Wilson, W., Czarnecki, S., Poliks, M., Jin, Z., Ghose, K., Egitto, F., Turner, J., & Arias, A. C. (2016). Flexible hybrid electronics: Direct interfacing of soft and hard electronics for wearable health monitoring. Advanced Functional Materials, 26(47), 8764–8775. https://doi.org/10.1002/adfm.201603763
  • Khatri, V., Chauhan, N., & Kalyanasundaram, R. (2020). Parasite cystatin: Immunomodulatory molecule with therapeutic activity against immune mediated disorders. Pathogens, 9(6), 431. https://doi.org/10.3390/pathogens9060431
  • Klotz, C., Ziegler, T., Daniłowicz-Luebert, E., & Hartmann, S. (2011). Cystatins of parasitic organisms. Advances in Experimental Medicine and Biology, 712, 208–221. https://doi.org/10.1007/978-1-4419-8414-2_13
  • Kumar, P., Dalal, V., Kokane, A., Singh, S., Lonare, S., Kaur, H., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2020). Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). International Journal of Biological Macromolecules, 147, 1228–1238. https://doi.org/10.1016/j.ijbiomac.2019.09.250
  • Kumari, N., Dalal, V., Kumar, P., & Rath, S. N. (2020). Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1839558
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Latty, S. L., Sakai, J., Hopkins, L., Verstak, B., Paramo, T., Berglund, N. A., Cammarota, E., Cicuta, P., Gay, N. J., Bond, P. J., Klenerman, D., & Bryant, C. E. (2018). Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub. eLife, 7, 31377. https://doi.org/10.7554/eLife.31377
  • Liou, J.-W., Chang, F.-T., Chung, Y., Chen, W.-Y., Fischer, W. B., & Hsu, H.-J. (2014). In silico analysis reveals sequential interactions and protein conformational changes during the binding of chemokine CXCL-8 to its receptor CXCR1. Plos One, 9(4), e94178. https://doi.org/10.1371/journal.pone.0094178
  • López-Blanco, J. R., Miyashita, O., Tama, F., & Chacón, P. (2014). Normal mode analysis techniques in structural biology. eLS. https://doi.org/10.1002/9780470015902.a0020204.pub2
  • Maizels, R. M., Smits, H. H., & McSorley, H. J. (2018). Modulation of host immunity by helminths: The expanding repertoire of parasite effector molecules. Immunity, 49(5), 801–818. https://doi.org/10.1016/j.immuni.2018.10.016
  • Malik, A., Dalal, V., Ankri, S. & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Mukherjee, S., Huda, S., & Sinha Babu, S. P. (2019). Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scandinavian Journal of Immunology, 90(1), e12771. https://doi.org/10.1111/sji.12771
  • Mukherjee, S., Joardar, N., & Babu, S. P. S. (2019). Redox regulatory circuits as targets for therapeutic intervention of Bancroftian filariasis: Biochemical, molecular, and pharmacological perspectives. In Oxidative stress in microbial diseases (pp. 185–208). Springer. https://doi.org/10.1007/978-981-13-8763-0_10
  • Mukherjee, S., Joardar, N., Mondal, S., Schiefer, A., Hoerauf, A., Pfarr, K., & Babu, S. P. S. (2018). Quinolone-fused cyclic sulfonamide as a novel benign antifilarial agent. Scientific Reports, 8(1), 12073. https://doi.org/10.1038/s41598-018-30610-7
  • Mukherjee, S., Joardar, N., & Sinha Babu, S. P. (2020). Exploring the homolog of a novel proinflammatory microfilarial sheath protein (MfP) of Wuchereria bancrofti in the adult-stage bovine filarial parasite Setaria cervi. Journal of Helminthology, 94, e15. https://doi.org/10.1017/S0022149X18001050
  • Mukherjee, S., Karmakar, S., & Babu, S. P. S. (2016). TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Brazilian Journal of Infectious Diseases, 20(2), 193–204. https://doi.org/10.1016/j.bjid.2015.10.011
  • Mukherjee, S., Karnam, A., Das, M., Babu, S. P. S., & Bayry, J. (2019). Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4. Communications Biology, 2(1), 1–11. https://doi.org/10.1038/s42003-019-0392-8
  • Mukherjee, S., Mukherjee, S., Maiti, T. K., Bhattacharya, S., & Sinha Babu, S. P. (2017). A novel ligand of Toll-like receptor 4 from the sheath of Wuchereria bancrofti microfilaria induces proinflammatory response in macrophages. The Journal of Infectious Diseases, 215(6), 954–965. https://doi.org/10.1093/infdis/jix067
  • Mukherjee, S., Mukherjee, N., Saini, P., Gayen, P., Roy, P., & Sinha Babu, S. P. (2014). Molecular evidence on the occurrence of co-infection with Pichia guilliermondii and Wuchereria bancrofti in two filarial endemic districts of India. Infectious Diseases of Poverty, 3(1), 13. https://doi.org/10.1186/2049-9957-3-13
  • Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 25(13), 1656–1676. https://doi.org/10.1002/jcc.20090
  • Panda, S. K., Kumar, S., Tupperwar, N. C., Vaidya, T., George, A., Rath, S., Bal, V., & Ravindran, B. (2012). Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. PLoS Pathogens, 8(5), e1002717. https://doi.org/10.1371/journal.ppat.1002717
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rajasekaran, S., Anuradha, R., & Bethunaickan, R. (2017). TLR specific immune responses against helminth infections. Journal of Parasitology Research, 2017,1–9. https://doi.org/10.1155/2017/6865789
  • Riches, N., Badia-Rius, X., Mzilahowa, T., & Kelly-Hope, L. A. (2020). A systematic review of alternative surveillance approaches for lymphatic filariasis in low prevalence settings: Implications for post-validation settings. PLoS Neglected Tropical Diseases, 14(5), e0008289. https://doi.org/10.1371/journal.pntd.0008289
  • Schierack, P., Lucius, R., Sonnenburg, B., Schilling, K., & Hartmann, S. (2003). Parasite-specific immunomodulatory functions of filarial cystatin. Infection and Immunity, 71(5), 2422–2429. https://doi.org/10.1128/IAI.71.5.2422-2429.2003
  • Schuler, L. D., Daura, X., & van Gunsteren, W. F. (2001). An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. Journal of Computational Chemistry, 22(11), 1205–1218. https://doi.org/10.1002/jcc.1078
  • Sen Gupta, P. S., Biswal, S., Singha, D., & Rana, M. K. (2020). Binding insight of clinically oriented drug famotidine with the identified potential target of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2020.1784795
  • Sen Gupta, P. S., Islam, R. N. U., Banerjee, S., Nayek, A., Rana, M. K., & Bandyopadhyay, A. K. (2021). Screening and molecular characterization of lethal mutations of human homogentisate 1, 2 dioxigenase. Journal of Biomolecular Structure & Dynamics, 39(5), 1661–1671. https://doi.org/10.1080/07391102.2020.1736158
  • Singh, N., Dalal, V., & Kumar P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Singh, N., Dalal, V., Kumar, V., Sharma, M., & Kumar, P. (2019). Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. Journal of Molecular Graphics and Modelling, 90, 161–170. https://doi.org/10.1016/j.jmgm.2019.05.002
  • Small, S. T., Labbé, F., Coulibaly, Y. I., Nutman, T. B., King, C. L., Serre, D., & Zimmerman, P. A. (2019). Human migration and the spread of the nematode parasite Wuchereria bancrofti. Molecular Biology and Evolution, 36(9), 1931–1941. https://doi.org/10.1093/molbev/msz116
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Sahoo, J., Vedithi, S. C., Mahapatra, N., Hussain, T., & Padhy, R. N. (2018). Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. Journal of Cellular Biochemistry, 119(12), 9838–9852. https://doi.org/10.1002/jcb.27304
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • World Health Organization (WHO). (2020). Lymphatic filariasis. Accessed on October 10, 2020, from https://www.who.int/news-room/fact-sheets/detail/lymphatic-filariasis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.