543
Views
36
CrossRef citations to date
0
Altmetric
Research Articles

In a search for potential drug candidates for combating COVID-19: computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins

, , , ORCID Icon, , , & show all
Pages 8866-8893 | Received 09 Jan 2021, Accepted 11 Apr 2021, Published online: 30 Apr 2021

References

  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep34984
  • Aktas, A., Tuzun, B., Taskin, A. H., Sayin, K., & Ataseven, H. (2020). How do arbidol and its analogs inhibit the SARS-CoV-2? Bratislava Medical Journal, 121(10), 705–711. https://doi.org/10.4149/BLL_2020_115
  • Al‐Karmalawy, A. A., Alnajjar, R., Dahab, M. M., Metwaly, A. M., & Eissa, I. H. (2021). Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2021.3
  • Albuquerque, S. O., Barros, T. G., Dias, L. R. S., Lima, C. H. d S., Azevedo, P. H. R d A., Flores-Junior, L. A. P., dos Santos, E. G., Loponte, H. F., Pinheiro, S., Dias, W. B., Muri, E. M. F., & Todeschini, A. R. (2020). Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). European Journal of Pharmaceutical Sciences, 154, 105510. https://doi.org/10.1016/j.ejps.2020.105510
  • Al-Karmalawy, A. A., & Khattab, M. (2020). Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor. New Journal of Chemistry, 44(33), 13990–13996. https://doi.org/10.1039/d0nj028d
  • Alnajjar, R., Mostafa, A., Kandeil, A., & Al-Karmalawy, A. A. (2020). Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 6, e05641. https://doi.org/10.1016/j.heliyon.2020.e05641
  • Banerjee, A., Santra, D., & Maiti, S. (2020). Energetics and IC50 based epitope screening in SARS CoV-2 (COVID 19) spike protein by immunoinformatic analysis implicating for a suitable vaccine development. Journal of Translational Medicine, 18, 281. https://doi.org/10.1186/s12967-020-02435-4
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. Journal of Chemical Physics, 98, 1372–1377. https://doi.org/10.1063/1.464304
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics. 98, 5648–5656. https://doi.org/10.1063/1.464913
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4, 1011–1033. https://doi.org/10.3390/v4061011
  • Benson, N. C., & Daggett, V. (2012). A comparison of multiscale methods for the analysis of molecular dynamics simulations. The Journal of Physical Chemistry B, 116(29), 8722–8731. https://doi.org/10.1021/jp302103t
  • Buhner, S. (2013). Herbal antivirals natural remedies for emerging and resistant viral infections (pp. 54–58). Storey Publishing.
  • Cavasotto, C. N. (2020). Binding free energy calculation using quantum mechanics aimed for drug lead optimization. In A. Heifetz (Ed.), Quantum mechanics in drug discovery (pp. 257–268). Springer US. https://doi.org/10.1007/978-1-0716-0282-9_16
  • Chemical Computing Group Inc. (2016). Molecular operating environment (MOE). https://scholar.google.com/scholar?cluster=7142026959131975597&hl=en&as_sdt=2005&sciodt=0,5.
  • Culp, W. C. (2020). Coronavirus disease 2019 situation update. World Health Organization. https://doi.org/10.1213/xaa.0000000000001218
  • da Silva, T. U., Pougy, K., de, C., Albuquerque, M. G., da Silva Lima, C. H., Machado, S., & de, P. (2020). Development of parameters compatible with the CHARMM36 force field for [Fe4S4]2+ clusters and molecular dynamics simulations of adenosine-5’-phosphosulfate reductase in GROMACS 2019. Journal of Biomolecular Structure and Dynamics, 13, 1–11. https://doi.org/10.1080/07391102.2020.1847687
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1–13. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh ewald: An N·log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98, 10089–10092. https://doi.org/10.1063/1.464397
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. In Protein dynamics (Vol. 1084, pp. 193–226). https://doi.org/10.1007/978-1-62703-658-0_11
  • Davis, I. W., & Baker, D. (2009). RosettaLigand docking with full ligand and receptor flexibility. Journal of Molecular Biology, 385, 381–392. https://doi.org/10.1016/j.jmb.2008.11.010
  • de Souza, A. S., Pacheco, B. D., Pinheiro, S., Muri, E. M., Dias, L. R., Lima, C. H., Garrett, R., de Moraes, M. B., de Souza, B. E., & Puzer, L. (2019). 3-Acyltetramic acids as a novel class of inhibitors for human kallikreins 5 and 7. Bioorganic & Medicinal Chemistry Letters, 29, 1094–1098. https://doi.org/10.1016/j.bmcl.2019.02.031
  • DeLano, W. L. (2020). The PyMOL molecular graphics system, version 2.3. Schrödinger LLC.
  • Dong, Y. W., Liao, M. L., Meng, X. L., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences of the United States of America, 115, 1274–1279. https://doi.org/10.1073/pnas.1718910115
  • Eliaa, S. G., Al-Karmalawy, A. A., Saleh, R. M., & Elshal, M. F. (2020). Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mTOR pathway and inhibition of calmodulin: In vitro and molecular docking studies. ACS Pharmacology & Translational Science, 3(6), 1330–1338. https://doi.org/10.1021/acsptsci.0c00144
  • Elmaaty, A. A., Alnajjar, R., Hamed, M. I. A., Khattab, M., Khalifa, M. M., & Al-Karmalawy, A. A. (2021). Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: Theoretical study †. RSC Advances, 11(17), 10027–10042. https://doi.org/10.1039/D0RA10674G
  • Forni, D., Cagliani, R., Clerici, M., & Sironi, M. (2017). Molecular evolution of human coronavirus genomes. Trends in Microbiology, 25(1), 35–48. https://doi.org/10.1016/j.tim.2016.09.001
  • Frisch, M. J. (2010). Gaussian 09 C.01. Gaussian, Inc.
  • Ghanem, A., Emara, H. A., Muawia, S., Abd El Maksoud, A. I., Al-Karmalawy, A. A., & Elshal, M. F. (2020). Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II:: In vitro and molecular docking studies. New Journal of Chemistry, 44(40), 17374–17381. https://doi.org/10.1039/D0NJ04088F
  • Golo, V. L., & Shaǐtan, K. V. (2002). Dynamic attractor for the Berendsen thermostat an the slow dynamics of biomacromolecules. Biofizika, 47, 611–617.
  • Gong, J., Ju, A., Zhou, D., Li, D., Zhou, W., Geng, W., Li, B., Li, L., Liu, Y., He, Y., & Song, M. (2015). Salvianolic acid Y: A new protector of PC12 cells against hydrogen peroxide- induced injury from Salvia officinalis. Molecules, 20, 683. https://doi.org/10.3390/molecules20010
  • Helal, M. A. (2020). Molecular basis of the potential interaction of SARS-CoV-2 spike protein to CD147 in COVID-19 associated-lymphopenia. Journal of Biomolecular Structure and Dynamics.,‌ 1–11. https://doi.org/10.1080/07391102.2020.1822208
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)<AID-JCC4 > 3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38, 27–28.
  • Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/jz01780a
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jing, Z., Fei, W., Zhou, J., Zhang, L., Chen, L., Zhang, X., Liang, X., Xie, J., Fang, Y., Sui, X., Han, W., & Pan, H. (2016). Salvianolic acid B, a novel autophagy inducer, exerts antitumor activity as a single agent in colorectal cancer cells. Oncotarget, 7(38), 61509–61519. https://doi.org/10.18632/oncotarget.11385
  • Karplus, M., & Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature, 347, 631–639. https://doi.org/10.1038/347631a0
  • Khattab, M., & Al‐Karmalawy, A. A. (2021). Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations. Frontiers in Chemistry, 9, 92. https://doi.org/10.3389/fchem.2021.628398
  • Konno, H. (2017). Synthesis and evaluation of phenylisoserine derivatives for the SARS-CoV 3CL protease inhibitor. Bioorganic & Medicinal Chemistry Letters, 27, 2746–2751. https://doi.org/10.1016/j.bmcl.2017.04.056
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, C. l., Liu, B., Wang, Z. Y., Xie, F., Qiao, W., Cheng, J., Kuang, J. Y., Wang, Y., Zhang, M. X., & Liu, D. S. (2020). Salvianolic acid B improves myocardial function in diabetic cardiomyopathy by suppressing IGFBP3. Journal of Molecular and Cellular Cardiology, 139, 98–112. https://doi.org/10.1016/j.yjmcc.2020.01.009
  • Likić, V. A., Gooley, P. R., Speed, T. P., & Strehler, E. E. (2005). A statistical approach to the interpretation of molecular dynamics simulations of calmodulin equilibrium dynamics. Protein Science, 14(12), 2955–2963. https://doi.org/10.1110/ps.051681605
  • Liu, K., Watanabe, E., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211. https://doi.org/10.1007/s10822-016-0005-2
  • Ma, L., Tang, L., & Yi, Q. (2019). Salvianolic acids: Potential source of natural drugs for the treatment of fibrosis disease and cancer. Frontiers in Pharmacology, 10, 97. https://doi.org/10.3389/fphar.2019.00097
  • McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand-protein docking. Current Science, 83, 845–856.
  • Mukhtar, M., Arshad, M., Ahmad, M., Pomerantz, R. J., Wigdahl, B., & Parveen, Z. (2008). Antiviral potentials of medicinal plants. Virus Research, 131(2), 111–120. https://doi.org/10.1016/j.virusres.2007.09.008
  • Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications. 184, 2641–2650. https://doi.org/10.1016/j.cpc.2013.06.003
  • Pandey, B., Grover, S., Goyal, S., Kumari, A., Singh, A., Jamal, S., Kaur, J., & Grover, A. (2018). Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region. Scientific Reports, 8, 903. https://doi.org/10.1038/s41598-017-19075-2
  • Qiao, J., Liu, A., Liu, J., Guan, D., & Chen, T. (2019). Salvianolic acid B (Sal B) alleviates the decreased activity induced by prednisolone acetate on osteoblasts by up-regulation of bone formation and differentiation genes. Food & Function, 10(9), 6184–6192. https://doi.org/10.1039/C9FO01246J
  • Ross, G. A., Rustenburg, A. S., Grinaway, P. B., Fass, J., & Chodera, J. D. (2018). Biomolecular simulations under realistic macroscopic salt conditions. The Journal of Physical Chemistry B, 122(21), 5466–5486. https://doi.org/10.1021/acs.jpcb.7b11734
  • Samra, R. M. (2021). Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L. South African Journal of Botany, 139, 210–216. https://doi.org/10.1016/j.sajb.2021.02.007
  • Schreiner, W., Karch, R., Knapp, B., & Ilieva, N. (2012). Relaxation estimation of RMSD in molecular dynamics immunosimulations. Computational and Mathematical Methods in Medicine, 2012, 173521. https://doi.org/10.1155/2012/173521
  • Sohrabi, C., Alsafi, Z., O'Neill, N., Khan, M., Kerwan, A., Al-Jabir, A., Iosifidis, C., & Agha, R. (2020). World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery, 76, 71–76. https://doi.org/10.1016/j.ijsu.2020.02.034
  • Srikumar, P., Rohini, K., & Rajesh, P. K. (2014). Molecular dynamics simulations and principal component analysis on human laforin mutation W32G and W32G/K87A. The Protein Journal, 33(3), 289–295. https://doi.org/10.1007/s10930-014-9561-2
  • Su, H., Ma, Z., Guo, A., Wu, H., & Yang, X. (2020). Salvianolic acid B protects against sepsis-induced liver injury via activation of SIRT1/PGC-1α signaling. Experimental and Therapeutic Medicine, 20, 2675–2683. https://doi.org/10.3892/etm.2020.9020
  • Tuble, S. C., Anwar, J., & Gale, J. D. (2004). An approach to developing a force field for molecular simulation of martensitic phase transitions between phases with subtle differences in energy and structure. Journal of the American Chemical Society, 126(1), 396–405. https://doi.org/10.1021/ja0356131
  • Wang, C., Luo, H., Xu, Y., Tao, L., Chang, C., & Shen, X. (2018). Salvianolic acid B-alleviated angiotensin II induces cardiac fibrosis by suppressing NF-κB pathway in vitro. Medical Science Monitor, 24, 7654–7664. https://doi.org/10.12659/MSM.908936
  • Wang, Y. (2017). Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret). Biomedicine & Pharmacotherapy, 91, 393–401. https://doi.org/10.1016/j.biopha.2017.04.091
  • Wu, C. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10, 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Yu, R., Chen, L., Lan, R., Shen, R., & Li, P. (2020). Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. International Journal of Antimicrobial Agents, 56, 106012. https://doi.org/10.1016/j.ijantimicag.2020.106012
  • Zaki, A. A., Al-Karmalawy, A. A., El-Amier, Y. A., & Ashour, A. (2020). Molecular docking reveals the potential of: Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease. New Journal of Chemistry, 44(39), 16752–16758. https://doi.org/10.1039/D0NJ03611K
  • Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., Wang, J., Qin, Y., Zhang, X., Yan, X., Zeng, X., & Zhang, S. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology, 214, 108393. https://doi.org/10.1016/j.clim.2020
  • Zhao, M., Li, F., Jian, Y., Wang, X., Yang, H., Wang, J., Su, J., Lu, X., Xi, M., Wen, A., & Li, J. (2020). Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. European Journal of Pharmacology, 871, 172916. https://doi.org/10.1016/j.ejphar.2020.172916
  • Zhou, D. (2020). Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nature Structural & Molecular Biology, 27, 950–958.
  • Zhu, B., Wang, X., & Teng, J. (2018). Salvianolic acid B inhibits inflammatory response and cell apoptosis via the PI3K/Akt signaling pathway in IL-1β-induced osteoarthritis chondrocytes. RSC Advances, 8(64), 36422–36429. https://doi.org/10.1039/C8RA02418A
  • Zhu, N. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382, 727–733. https://doi.org/10.1056/nejmoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.