926
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease

ORCID Icon, , , , , & ORCID Icon show all
Pages 8925-8937 | Received 30 Sep 2020, Accepted 16 Apr 2021, Published online: 05 May 2021

Reference

  • Almazán, F., Sola, I., Zuñiga, S., Marquez-Jurado, S., Morales, L., Becares, M., & Enjuanes, L. (2014). Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 189, 262–270. https://doi.org/10.1016/j.virusres.2014.05.026
  • Amaral, J. L., Santos, S. J. M., Souza, P. F. N., de Morais, P. A., Maia, F. F., Carvalho, H. F., & Freire, V. N. (2020). Quantum biochemistry in cancer immunotherapy: New insights about CTLA-4/ipilimumab and design of ipilimumab-derived peptides with high potential in cancer treatment. Molecular Immunology, 127, 203–211. https://doi.org/10.1016/j.molimm.2020.09.013
  • Bzówka, M., Mitusińska, K., Raczyńska, A., Samol, A., Tuszyński, J. A., & Góra, A. (2020). Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. International Journal of Molecular Sciences, 21(9), 3099. https://doi.org/10.3390/ijms21093099
  • Campos, D. M. O., Bezerra, K. S., Esmaile, S. C., Fulco, U. L., Albuquerque, E. L., & Oliveira, J. I. N. (2020). Intermolecular interactions of cn-716 and acyl-KR-aldehyde dipeptide inhibitors against Zika virus. Physical Chemistry Chemical Physics, 22(27), 15683–15695. https://doi.org/10.1039/D0CP02254C
  • CDC. (n.d). COVIDView: A weekly surveillance summary of U.S. COVID-19 activity. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
  • Dai, W., Zhang, B., Jiang, X. M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Delley, B. (2000). From molecules to solids with the DMol3 approach. Journal of Chemical Physics, 113(18), 7756–7764. https://doi.org/10.1063/1.1316015
  • Diamond, M. S., & Pierson, T. C. (2020). The challenges of vaccine development against a new virus during a pandemic. Cell Host & Microbe, 27(5), 699–703. https://doi.org/10.1016/j.chom.2020.04.021
  • Dias, L. P., Souza, P. F. N., Oliveira, J. T. A., Vasconcelos, I. M., Araújo, N. M. S., Tilburg, M. F V., Guedes, M. I. F., Carneiro, R. F., Lopes, J. L. S., & Sousa, D. O. B. (2020). RcAlb-PepII, a synthetic small peptide bioinspired in the 2S albumin from the seed cake of Ricinus communis, is a potent antimicrobial agent against Klebsiella pneumoniae and Candida parapsilosis. Biochimica et Biophysica Acta (Bba) - Biomembranes, 1862(2), 183092. https://doi.org/10.1016/j.bbamem.2019.183092
  • Estrada, E. (2020). Topological analysis of SARS CoV-2 main protease. Chaos: An Interdisciplinary Journal of Nonlinear Science, 30(6), 061102. https://doi.org/10.1063/5.0013029
  • Hall, D. C., & Ji, H.-F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health — The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Li, H., Liu, L., Zhang, D., Xu, J., Dai, H., Tang, N., Su, X., & Cao, B. (2020). SARS-CoV-2 and viral sepsis: Observations and hypotheses. Lancet, 395(10235), 1517–1520. https://doi.org/10.1016/S0140-6736(20)30920-X
  • Liu, S., Zheng, Q., & Wang, Z. (2020). Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 36(11), 3295–3298. https://doi.org/10.1093/bioinformatics/btaa224
  • Moal, I. H., & Bates, P. A. (2010). SwarmDock and the use of normal modes in protein-protein Docking. International Journal of Molecular Sciences, 11(10), 3623–3648. https://doi.org/10.3390/ijms11103623
  • Morais, P. A., Maia, F. F., Solis-Calero, C., Caetano, E. W. S., Freire, V. N., & Carvalho, H. F. (2020). The urokinase plasminogen activator binding to its receptor: A quantum biochemistry description within an in/homogeneous dielectric function framework with application to uPA-uPAR peptide inhibitors. Physical Chemistry Chemical Physics, 22(6), 3570–3583. https://doi.org/10.1039/C9CP06530J
  • Ngo, S. T., Quynh Anh Pham, N., Thi Le, L., Pham, D.-H., & Vu, V. V. (2020). Computational determination of potential inhibitors of SARS-CoV-2 main protease. Journal of Chemical Information and Modeling, 60(12), 5771–5780. https://doi.org/10.1021/acs.jcim.0c00491
  • Oliveira, J. T. A., Souza, P. F. N., Vasconcelos, I. M., Dias, L. P., Martins, T. F., Van Tilburg, M. F., Guedes, M. I. F., & Sousa, D. O. B. (2019). Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 157, 10–21. https://doi.org/10.1016/j.biochi.2018.10.016
  • Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Unrevealing sequence and structural features of novel coronavirus using in silico approaches: The main protease as molecular target. EXCLI J, 19, 400–409. https://doi.org/10.17179/excli2020-1189
  • Practice, B. M. J. B. (2020). Coronavirus disease 2019. World Health Organization, 2019, 2633. https://doi.org/10.1001/jama.2020.2633
  • Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R., & Salem, R. (2020). The COVID-19 cytokine storm; what we know so far. Frontiers in Immunology, 11, 1446. https://doi.org/10.3389/fimmu.2020.01446
  • Ramírez-Aportela, E., Ramón López-Blanco, J., & Chacón, P. (2016). Structural bioinformatics FRODOCK 2.0: Fast protein-protein docking server, 2008–2010. http://frodock.chaconlab.org
  • Robertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved peptide and protein torsional energetics with the OPLS-AA force field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356
  • Saxena, A. (2020). Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45(1), 87. https://doi.org/10.1007/s12038-020-00067-w
  • Serafin, M. B., Bottega, A., Foletto, V. S., da Rosa, T. F., Hörner, A., & Hörner, R. (2020). Drug repositioning is an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents, 55(6), 105969. https://doi.org/10.1016/j.ijantimicag.2020.105969
  • Sharma, P., Vijayan, V., Pant, P., Sharma, M., Vikram, N., Kaur, P., Singh, T. P., & Sharma, S. (2020). Identification of potential drug candidates to combat COVID-19: A structural study using the main protease (mpro) of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 0, 1–11. https://doi.org/10.1080/07391102.2020.1798286
  • Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y., Zhu, H., Zhao, W., Han, Y., & Qin, C. (2019). From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 11(1), 59. https://doi.org/10.3390/v11010059
  • Sousa, B. L., Barroso-Neto, I. L., Oliveira, E. F., Fonseca, E., Lima-Neto, P., Ladeira, L. O., & Freire, V. N. (2016). Explaining RANKL inhibition by OPG through quantum biochemistry computations and insights into peptide-design for the treatment of osteoporosis. RSC Advances, 6(88), 84926–84942. https://doi.org/10.1039/C6RA16712H
  • Souza, P. F. N., Lopes, F. E. S., Amaral, J. L., Freitas, C. D. T., & Oliveira, J. T. A. (2020). A molecular docking study revealed that synthetic peptides induced conformational changes in the structure of SARS-CoV-2 spike glycoprotein, disrupting the interaction with human ACE2 receptor. International Journal of Biological Macromolecules, 164, 66–76. https://doi.org/10.1016/j.ijbiomac.2020.07.174
  • Souza, P. F. N., Marques, L. S. M., Oliveira, J. T. A., Lima, P. G., Dias, L. P., Neto, N. A. S., Lopes, F. E. S., Sousa, J. S., Silva, A. F. B., Caneiro, R. F., Lopes, J. L. S., Ramos, M. V., & Freitas, C. D. T. (2020). Synthetic antimicrobial peptides: From choice of the best sequences to action mechanisms. Biochimie, 175, 132–145. https://doi.org/10.1016/j.biochi.2020.05.016
  • Souza, P. F. N., Mesquita, F. P., Amaral, J. L., Lima P. G. C., Lima K. R. P., Costa, M. B., Farias, I. R., Lima, L. B., & Montenegro, R. C. (2021). The Human Pandemic Coronaviruses on the Show: The Spike Glycoprotein as the Main Actor in the Coronaviruses Play. International Journal of Biological Macromolecules, 179, 1–19. https://doi.org/10.1016/j.ijbiomac.2021.02.203
  • Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., & Wen, C. (2020). Cytokine storm in COVID-19: The current evidence and treatment strategies. Frontiers in Immunology, 11, 1708. https://doi.org/10.3389/fimmu.2020.01708
  • Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology, 20(6), 363–374. https://doi.org/10.1038/s41577-020-0311-8
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • VanPatten, S., He, M., Altiti, A., Cheng, K. F., Ghanem, M. H., & Al-Abed, Y. (2020). Evidence supporting the use of peptides and peptidomimetics as potential SARS-CoV-2 (COVID-19) therapeutics. Future Medicinal Chemistry, 12(18), 1647–1656.
  • WHO. (2020). Middle East respiratory syndrome coronavirus (MERS-CoV). WHO.
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X., & Gao, G. F. (2017). Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nature Communications, 8, 15092. https://doi.org/10.1038/ncomms15092
  • Zhang, D. W., & Zhang, J. Z. H. (2003). Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. Journal of Chemical Physics, 119(7), 3599–3605. https://doi.org/10.1063/1.1591727
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, Y., Xu, J., Jia, R., Yi, C., Gu, W., Liu, P., Dong, X., Zhou, H., Shang, B., Cheng, S., Sun, X., Ye, J., Li, X., Zhang, J., Ling, Z., Ma, L., Wu, B., Zeng, M., Zhou, W., & Sun, B. (2020). Protective humoral immunity in SARS-CoV-2 infected pediatric patients. Cellular and Molecular Immunology, 17, 768–770. https://doi.org/10.1038/s41423-020-0438-3
  • Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology, 81(4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.