1,800
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Computational basis of SARS-CoV 2 main protease inhibition: an insight from molecular dynamics simulation based findings

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 8894-8904 | Received 23 Oct 2020, Accepted 11 Apr 2021, Published online: 13 May 2021

References

  • Altintas, E., Akkus, N., Gen, R., Helvaci, M. R., Sezgin, O., & Oguz, D. (2004). Effects of Terlipressin on systolic pulmonary artery pressure of patients with liver cirrhosis: An echocardiographic assessment. World Journal of Gastroenterology, 10(15), 2278. https://doi.org/10.3748/wjg.v10.i15.2278
  • Báez-Santos, Y. M., John, S. E. S., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1758788
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., & Gregersen, B. A. (Eds.). (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06 (pp. 43–43), Tampa, FL, USA. https://doi.org/10.1109/SC.2006.54
  • Chen, Y. W., Yiu, C.-P., & Wong, K.-Y. (2020). Prediction of the 2019-nCoV 3C-like protease (3CLpro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • DrugBank. (n.d.). https://www.drugbank.ca/
  • Elfiky, A. A. (2020). Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. . https://doi.org/10.1016/j.lfs.2020.117592
  • González-Andrade, M., Rodríguez-Sotres, R., Madariaga-Mazón, A., Rivera-Chávez, J., Mata, R., Sosa-Peinado, A., Del Pozo-Yauner, L., & Arias-Olguín, I. I. (2016). Insights into molecular interactions between CaM and its inhibitors from molecular dynamics simulations and experimental data. Journal of Biomolecular Structure & Dynamics, 34(1), 78–91. https://doi.org/10.1080/07391102.2015.1022225
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Harrison, C. (2020). Coronavirus puts drug repurposing on the fast track. Nature Biotechnology, 38(4), 379–381. https://doi.org/10.1038/d41587-020-00003-1
  • Holmes, K. V. (2003). SARS coronavirus: A new challenge for prevention and therapy. The Journal of Clinical Investigation, 111(11), 1605–1609. https://doi.org/10.1172/JCI18819
  • Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2’s main protease. Journal of Physical Chemistry Letters. https://doi.org/10.1021/acs.jpclett.0c00994.
  • Joshi, R., Giri, A. P., Kulkarni, M. J., Verma, S., Chaudhary, D., & Deshmukh, N. (2020). Rationale based selection and prioritization of antiviral drugs for COVID-19 management. ChemRxiv.Preprint. https://doi.org/10.26434/chemrxiv.12429629.v1
  • Karuppasamy, R., Verma, K., Sequeira, V. M., Basavanna, L. N., & Veerappapillai, S. (2017). An integrative drug repurposing pipeline: Switching viral drugs to breast cancer. Journal of Cellular Biochemistry, 118(6), 1412–1422. https://doi.org/10.1002/jcb.25799
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016.
  • Liu, W., Morse, J. S., Lalonde, T., & Xu, S. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembiochem: A European Journal of Chemical Biology, 21(5), 730–738. https://doi.org/10.1002/cbic.202000047
  • Liu, X., & Wang, X.-J. (2020). Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. Journal of Genetics and Genomics, 47(2), 119–121. https://doi.org/10.1016/j.jgg.2020.02.001
  • Mousavizadeh, L., & Ghasemi, S. (2020). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022
  • Musarrat, F., Chouljenko, V., Dahal, A., Nabi, R., Chouljenko, T., Jois, S. D., & Kousoulas, K. G. (2020). The anti‐HIV Drug NelfinavirMesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARS‐CoV‐2 Spike (S) glycoprotein warranting further evaluation as an antiviral against COVID‐19 infections. Journal of Medical Virology, 92(10), 2087–2095. https://doi.org/10.1002/jmv.25985
  • Mysinger, M. M., Carchia, M., Irwin, J. J., & Shoichet, B. K. (2012). Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. Journal of Medicinal Chemistry, 55(14), 6582–6594. https://doi.org/10.1021/jm300687e
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56–65. https://doi.org/10.4103/ijp.IJP_115_20
  • Prajapat, M., Sarma, P., Shekhar, N., Prakash, A., Avti, P., Bhattacharyya, A., Kaur, H., Kumar, S., Bansal, S., Sharma, A. R., & Medhi, B. (2020). Update on the target structures of SARS-nCoV-2: A systematic review. Indian Journal of Pharmacology, 52(2), 142. https://doi.org/10.4103/ijp.IJP_338_20
  • Purohit, R., & Sethumadhavan, R. (2009). Structural basis for the resilience of Darunavir (TMC114) resistance major flap mutations of HIV-1 protease. Interdisciplinary Sciences, Computational Life Sciences, 1(4), 320–328. https://doi.org/10.1007/s12539-009-0043-8
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Saner, F. H., Canbay, A., Gerken, G., & Broelsch, C. E. (2007). Pharmacology, clinical efficacy and safety of Terlipressin in esophagealvarices bleeding, septic shock and hepatorenal syndrome. Expert Review of Gastroenterology & Hepatology, 1(2), 207–217. https://doi.org/10.1586/17474124.1.2.207
  • Sarma, P., Kaur, H., Kumar, H., Mahendru, D., Avti, P., Bhattacharyya, A., Prajapat, M., Shekhar, N., Kumar, S., Singh, R., Singh, A., Dhibar, D. P., Prakash, A., & Medhi, B. (2020). Virological and clinical cure in COVID‐19 patients treated with hydroxychloroquine: A systematic review and meta‐analysis. Journal of Medical Virology, 92(7), 776–785. https://doi.org/10.1002/jmv.25898
  • Sarma, P., Prajapat, M., Avti, P., Kaur, H., Kumar, S., & Medhi, B. (2020). Therapeutic options for the treatment of 2019-novel coronavirus: An evidence-based approach. Indian Journal of Pharmacology, 52(1), 1–5. https://doi.org/10.4103/ijp.IJP_119_20.
  • Sarma, P., Shekhar, N., Prajapat, M., Avti, P., Kaur, H., & Kumar, S. (2020). In-silico homology assisted identification of inhibitor of RNA binding against 2019-nCoV N-protein (N terminal domain). Journal of Biomolecular Structure & Dynamics, 39(8), 2724–2732. https://doi.org/10.1080/07391102.2020.1753580
  • Shi, J., & Song, J. (2006). The catalysis of the SARS 3C‐like protease is under extensive regulation by its extra domain. The FEBS Journal, 273(5), 1035–1045. https://doi.org/10.1111/j.1742-4658.2006.05130.x
  • Strittmatter, S. M. (2014). Overcoming drug development bottlenecks with repurposing: Old drugs learn new tricks. Nature Medicine, 20(6), 590–591. https://doi.org/10.1038/nm.3595
  • Verma, K., Kannan, K., Shanthi, V., Sethumadhavan, R., Karthick, V., & Ramanathan, K. (2017). Exploring β‐tubulin inhibitors from plant origin using computational approach. Phytochemical Analysis: PCA, 28(3), 230–241. https://doi.org/10.1002/pca.2665
  • Xu, Z., Peng, C., Shi, Y., Zhu, Z., Mu, K., & Wang, X. (2020). Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv. https://doi.org/10.1101/2020.01.27.921627
  • Xue, H., Li, J., Xie, H., & Wang, Y. (2018). Review of drug repositioning approaches and resources. International Journal of Biological Sciences, 14(10), 1232–1244. https://doi.org/10.7150/ijbs.24612.
  • Yamamoto, N., Matsuyama, S., Hoshino, T., & Yamamoto, N. (2020). Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. BioRxiv. https://doi.org/10.1101/2020.04.06.026476
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhavoronkov, A., Zagribelnyy, B., Zhebrak, A., Aladinskiy, V., Terentiev, V., & Vanhaelen, Q. (2020). Potential non-covalent SARS-CoV-2 3C-like protease inhibitors designed using generative deep learning approaches and reviewed by human medicinal chemist in virtual reality. ChemRxiv. Preprint. https://doi.org/10.13140/RG.2.2.13846.98881
  • Ziebuhr, J., Snijder, E. J., & Gorbalenya, A. E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of General Virology, 81(Pt 4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.