223
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Classical MD and metadynamics simulations on back-pocket binders of CDK2 and VEGFR2: a guidepost to design novel small-molecule dual inhibitors

&
Pages 9030-9041 | Received 23 Dec 2020, Accepted 22 Apr 2021, Published online: 05 May 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Alexander, L. T., Möbitz, H., Drueckes, P., Savitsky, P., Fedorov, O., Elkins, J. M., Deane, C. M., Cowan-Jacob, S. W., & Knapp, S. (2015). Type II inhibitors targeting CDK2. ACS Chemical Biology, 10(9), 2116–2125. https://doi.org/10.1021/acschembio.5b00398
  • Arslan, M. A., Kutuk, O., & Basaga, H. (2006). Protein kinases as drug targets in cancer. Current Cancer Drug Targets, 6(7), 623–634. https://doi.org/10.2174/156800906778742479
  • Backes, A. C., Müller, G., & Sennhenn, P. C. (2011). Design principles of deep pocket-targeting protein kinase inhibitors. In B. Klebl, G. Müller, & M. Hamachar (Eds.), Protein Kinases as Drug Targets. Wiley-VHC. https://doi.org/10.1002/9783527633470.ch6
  • Barducci, A., Bonomi, M., & Parrinello, M. (2011). Metadynamics. WIREs Computational Molecular Science, 1(5), 826–843. https://doi.org/10.1002/wcms.31
  • Blanc, J., Geney, R., & Menet, C. (2013). Type II kinase inhibitors: An opportunity in cancer for rational design. Anti-Cancer Agents in Medicinal Chemistry, 13(5), 731–747. https://doi.org/10.2174/1871520611313050008
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Braun, E., Gilmer, J., Mayes, H. B., Mobley, D. L., Monroe, J. I., Prasad, S., & Zuckerman, D. M. (2019). Best practices for foundations in molecular simulations [Article v1.0]. Living Journal of Computational Molecular Science, 1(1), 1–28. https://doi.org/10.33011/livecoms.1.1.5957
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Costanzo, L. D., Christie, C., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Guzenko, D., Hudson, B. P., Liang, Y., Lowe, R., Peisach, E., Periskova, I., Randle, C., & Ioannidis, Y. E. (2019). Protein Data Bank: The single global archive for 3D macromolecular structure data. Nucleic Acids Research, 47(D1), D520–D528. https://doi.org/10.1093/nar/gky949
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Callegari, D., Lodola, A., Pala, D., Rivara, S., Mor, M., Rizzi, A., & Capelli, A. M. (2017). Metadynamics simulations distinguish short- and long-residence-time inhibitors of cyclin-dependent kinase 8. Journal of Chemical Information and Modeling, 57(2), 159–169. https://doi.org/10.1021/acs.jcim.6b00679
  • Campaner, S., Doni, M., Hydbring, P., Verrecchia, A., Bianchi, L., Sardella, D., Schleker, T., Perna, D., Tronnersjö, S., Murga, M., Fernandez-Capetillo, O., Barbacid, M., Larsson, L.-G., & Amati, B. (2010). Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nature Cell Biology, 12(1), 54–59. https://doi.org/10.1038/ncb2004
  • Capelli, A. M., & Costantino, G. (2014). Unbinding pathways of VEGFR2 inhibitors revealed by steered molecular dynamics. Journal of Chemical Information and Modeling, 54(11), 3124–3136. https://doi.org/10.1021/ci500527j
  • Casasnovas, R., Limongelli, V., Tiwary, P., Carloni, P., & Parrinello, M. (2017). Unbinding kinetics of a p38 MAP kinase type II inhibitor from metadynamics simulations. Journal of the American Chemical Society, 139(13), 4780–4788. https://doi.org/10.1021/jacs.6b12950
  • Cohen, P. (2002). Protein kinases–the major drug targets of the twenty-first century? Nature Reviews. Drug Discovery, 1(April), 309–315. https://doi.org/10.1038/nrd773
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Ensing, B., De Vivo, M., Liu, Z., Moore, P., & Klein, M. L. (2006). Metadynamics as a tool for exploring free energy landscapes of chemical reactions. Accounts of Chemical Research, 39(2), 73–81. https://doi.org/10.1021/ar040198i
  • Fias, S., Damme, S., & Van Bultinck, P. (2008). Multidimensionality of delocalization indices and nucleus independent chemical shifts in polycyclic aromatic hydrocarbons. Journal of Computational Chemistry, 29(3), 358–366. https://doi.org/10.1002/jcc https://doi.org/10.1002/jcc.20794
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H., Izmaylov, A., Bloino, J., Zheng, G., Sonnenberg, J., Hada, M., & Fox, D. (2009). Gaussian 09 (Revision A02). Gaussian Inc.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gillis, N. K., & McLeod, H. L. (2016). The pharmacogenomics of drug resistance to protein kinase inhibitors. Drug Resistance Updates, 28, 28–42. https://doi.org/10.1016/j.drup.2016.06.008
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hicklin, D. J., & Ellis, L. M. (2005). Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal of Clinical Oncology, 23(5), 1011–1027. https://doi.org/10.1200/JCO.2005.06.081
  • Hopkins, A. L., Keserü, G. M., Leeson, P. D., Rees, D. C., & Reynolds, C. H. (2014). The role of ligand efficiency metrics in drug discovery. Nature Reviews Drug Discovery, 13(2), 105–121. https://doi.org/10.1038/nrd4163
  • Hu, Y., & Bajorath, J. (2015). Exploring the scaffold universe of kinase inhibitors. Journal of Medicinal Chemistry, 58(1), 315–332. https://doi.org/10.1021/jm501237k
  • Hydbring, P., & Larsson, L.-G. (2010). Cdk2: A key regulator of the senescence control function of Myc. Aging, 2(4), 244–250. https://doi.org/10.18632/aging.100140
  • Iwata, H., Imamura, S., Hori, A., Hixon, M. S., Kimura, H., & Miki, H. (2011). Biochemical characterization of a novel type-II VEGFR2 kinase inhibitor: Comparison of binding to non-phosphorylated and phosphorylated VEGFR2. Bioorganic & Medicinal Chemistry, 19(18), 5342–5351. https://doi.org/10.1016/j.bmc.2011.08.002
  • Jacobson, M., Friesner, R., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins: Structure, Function and Genetics, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Klein, T., Vajpai, N., Phillips, J. J., Davies, G., Holdgate, G. A., Phillips, C., Tucker, J. A., Norman, R. A., Scott, A. D., Higazi, D. R., Lowe, D., Thompson, G. S., & Breeze, A. L. (2015). Structural and dynamic insights into the energetics of activation loop rearrangement in FGFR1 kinase. Nature Communications, 6(1), 7877. https://doi.org/10.1038/ncomms8877
  • Kokh, D. B., Amaral, M., Bomke, J., Grädler, U., Musil, D., Buchstaller, H. P., Dreyer, M. K., Frech, M., Lowinski, M., Vallee, F., Bianciotto, M., Rak, A., & Wade, R. C. (2018). Estimation of drug-target residence times by τ-random acceleration molecular dynamics simulations. Journal of Chemical Theory and Computation, 14(7), 3859–3869. https://doi.org/10.1021/acs.jctc.8b00230
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., Kumar, R., Source, O., Discovery, D., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laio, A., & Gervasio, F. L. (2008). Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 71(12), 126601. https://doi.org/10.1088/0034-4885/71/12/126601
  • Laio, A., & Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12562–12566. https://doi.org/10.1073/pnas.202427399
  • Lapenna, S., & Giordano, A. (2009). Cell cycle kinases as therapeutic targets for cancer. Nature Reviews. Drug Discovery, 8(7), 547–566. https://doi.org/10.1038/nrd2907
  • Lemkul, J. (2014). Could it be NVT ensembles followed by NPT ensembles during the molecular dynamics simulation? Research Gate 2014. https://www.researchgate.net/post/Could_it_be_NVT_ensembles_followed_by_NPT_ensembles_during_the_molecular_dynamics_simulation
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, Y., & Gray, N. S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology, 2(7), 358–364. https://doi.org/10.1038/nchembio799
  • Lovera, S., Sutto, L., Boubeva, R., Scapozza, L., Dölker, N., & Gervasio, F. L. (2012). The different flexibility of c-Src and c-Abl kinases regulates the accessibility of a druggable inactive conformation. Journal of the American Chemical Society, 134(5), 2496–2499. https://doi.org/10.1021/ja210751t
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Maesaka, H., Fukazawa, K., Suwa, S., & Goto, A. (1978). Case of diabetes insipidus with thyroxine binding globulin deficiency. Horumon to Rinsho. Clinical Endocrinology, 26(11), 1208–1213.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • McTigue, M., Murray, B. W., Chen, J. H., Deng, Y.-L., Solowiej, J., & Kania, R. S. (2012). Molecular conformations, interactions, and properties associated with drug efficiency and clinical performance among VEGFR TK inhibitors. Proceedings of the National Academy of Sciences, 109(45), 18281–18289. https://doi.org/10.1073/pnas.1207759109
  • Meza, J. C. (2010). Steepest descent. Wiley Interdisciplinary Reviews: Computational Statistics, 2(6), 719–722. https://doi.org/10.1002/wics.117
  • Minchinton, A. I., & Tannock, I. F. (2006). Drug penetration in solid tumours. Nature Reviews. Cancer, 6(8), 583–592. https://doi.org/10.1038/nrc1893
  • Morando, M. A., Saladino, G., D’Amelio, N., Pucheta-Martinez, E., Lovera, S., Lelli, M., López-Méndez, B., Marenchino, M., Campos-Olivas, R., & Gervasio, F. L. (2016). Conformational selection and induced fit mechanisms in the binding of an anticancer drug to the c-Src kinase. Scientific Reports, 6(March), 1–9. https://doi.org/10.1038/srep24439
  • Mülders, T., Toxvaerd, S., & Kneller, G. R. (1998). Efficient stress relaxation in molecular dynamics simulations of semiflexible n-alkanes. Physical Review E, 58(5), 6766–6780. https://doi.org/10.1103/PhysRevE.58.6766
  • Noble, M. E. M., Endicott, J. A., & Johnson, L. N. (2004). Protein kinase inhibitors: Insights into drug design from structure. Science, 303(5665), 1800–1805. https://doi.org/10.1126/science.1095920
  • Olsson, A.-K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling – In control of vascular function. Nature Reviews. Molecular Cell Biology, 7(5), 359–371. https://doi.org/10.1038/nrm1911
  • Páll, S., Abraham, M. J., Kutzner, C., Berk, H., & Erik, L. (2015). Tackling Exascale software challenges in molecular dynamics simulations with GROMACS. In S. Markidis &, E. Laure (Eds.), Solving software challenges for Exascale. EASC 2014. Lecture notes in computer science (Vol. 8759, pp. 3–27). Springer. https://doi.org/10.1007/978-3-319-15976-8
  • Rabiller, M., Getlik, M., Klüter, S., Richters, A., Tückmantel, S., Simard, J. R., & Rauh, D. (2010). Proteus in the world of proteins: Conformational changes in protein kinases. Archiv Der Pharmazie, 343(4), 193–206. https://doi.org/10.1002/ardp.201000028
  • Rabiller, M., Simard, J. R., & Rauh, D. (2011). Dissecting phosphorylation networks: The use of analogue-sensitive kinases. In B. Klebl, G. Müller, & M. Hamacher (Eds.), Protein kinases as drug targets (pp. 69–83). Wiley-VCH Verlag GmbH & Co. KGaA.
  • Ritchie, T. J., & Macdonald, S. J. F. (2009). The impact of aromatic ring count on compound developability – Are too many aromatic rings a liability in drug design? Drug Discovery Today., 14(21-22), 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014
  • Romano, G. (2013). Deregulations in the cyclin-dependent kinase-9-related pathway in cancer: Implications for drug discovery and development. ISRN Oncology, 2013, 18–20. https://doi.org/10.1155/2013/305371
  • Rose, P. W., Prlić, A., Bi, C., Bluhm, W. F., Christie, C. H., Dutta, S., Green, R. K., Goodsell, D. S., Westbrook, J. D., Woo, J., Young, J., Zardecki, C., Berman, H. M., Bourne, P. E., & Burley, S. K. (2015). The RCSB Protein Data Bank: Views of structural biology for basic and applied research and education. Nucleic Acids Research, 43(D1), D345–D356. https://doi.org/10.1093/nar/gku1214
  • Roskoski, R. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor progression. Critical Reviews in Oncology/Hematology, 62(3), 179–213. https://doi.org/10.1016/j.critrevonc.2007.01.006
  • Roskoski, R. (2015). A historical overview of protein kinases and their targeted small molecule inhibitors. Pharmacological Research, 100, 1–23. https://doi.org/10.1016/j.phrs.2015.07.010
  • Roskoski, R. (2016). Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacological Research, 103, 26–48. https://doi.org/10.1016/j.phrs.2015.10.021
  • Sánchez-Martínez, C., Gelbert, L. M., Lallena, M. J., & de Dios, A. (2015). Cyclin dependent kinase (CDK) inhibitors as anticancer drugs. Bioorganic & Medicinal Chemistry Letters, 25(17), 3420–3435. https://doi.org/10.1016/j.bmcl.2015.05.100
  • Scholz, A., Wagner, K., Welzel, M., Remlinger, F., Wiedenmann, B., Siemeister, G., Rosewicz, S., & Detjen, K. M. (2009). The oral multitarget tumour growth inhibitor, ZK 304709, inhibits growth of pancreatic neuroendocrine tumours in an orthotopic mouse model. Gut, 58(2), 261–270. https://doi.org/10.1136/gut.2007.146415
  • Schrödinger Release 2019-3: Maestro. (2019). Schrödinger, LLC. (n.d.).
  • Scott, E. N., Thomas, A. L., Molife, L. R., Ahmed, S., Blagden, S., Fong, P. C., Kowal, K., McCoy, C., Wiesinger, H., Steward, W., & De Bono, J. (2009). A phase i dose escalation study of the pharmacokinetics and tolerability of ZK 304709, an oral multi-targeted growth inhibitor (MTGITM), in patients with advanced solid tumours. Cancer Chemotherapy and Pharmacology, 64(2), 425–429. https://doi.org/10.1007/s00280-009-0968-y
  • Sgobba, M., Caporuscio, F., Anighoro, A., Portioli, C., & Rastelli, G. (2012). Application of a post-docking procedure based on MM-PBSA and MM-GBSA on single and multiple protein conformations. European Journal of Medicinal Chemistry, 58, 431–440. https://doi.org/10.1016/j.ejmech.2012.10.024
  • Shan, Y., Arkhipov, A., Kim, E. T., Pan, A. C., & Shawa, D. E. (2013). Transitions to catalytically inactive conformations in EGFR kinase. Proceedings of the National Academy of Sciences of the United States of America, 110(18), 7270–7275. https://doi.org/10.1073/pnas.1220843110
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Siemeister, G., Luecking, U., Wagner, C., Detjen, K., Mc Coy, C., & Bosslet, K. (2006). Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709. Biomedicine & Pharmacotherapy = Biomédecine & Pharmacothérapie, 60(6), 269–272. https://doi.org/10.1016/j.biopha.2006.06.003
  • Siemeister, G. (2005). Pharmaceutical combination comprising a CDK inhibitor and a VEGF receptor inhibitor (EP001568368A1).
  • Stacker, S. A., & Achen, M. G. (2013). The VEGF signaling pathway in cancer: The road ahead. Chinese Journal of Cancer, 32(6), 297–302. https://doi.org/10.5732/cjc.012.10319
  • Stanković, T., Dinić, J., Podolski-Renić, A., Musso, L., Stojković Burić, S., Dallavalle, S., & Pešić, M. (2019). Dual inhibitors as a rational strategy for cancer multidrug resistance treatment. Current Medicinal Chemistry, 26(33), 6074–6106. https://doi.org/10.2174/0929867325666180607094856
  • Sun, H., Tian, S., Zhou, S., Li, Y., Li, D., Xu, L., Shen, M., Pan, P., & Hou, T. (2015). Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations. Scientific Reports, 5(1), 8457. https://doi.org/10.1038/srep08457
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vásquez, A. F., Reyes Muñoz, A., Duitama, J., & González Barrios, A. (2020). Discovery of new potential CDK2/VEGFR2 type II inhibitors by fragmentation and virtual screening of natural products. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2020.1763839
  • Waldner, M. J., & Neurath, M. F. (2012). Targeting the VEGF signaling pathway in cancer therapy. Expert Opinion on Therapeutic Targets, 16(1), 5–13. https://doi.org/10.1517/14728222.2011.641951
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Yarmoluk, S. M., Nyporko, a Y., & Bdzhola, V. G. (2013). Rational design of protein kinase inhibitors. Biopolymers and Cell, 29(4), 339–347. https://doi.org/10.7124/bc.000828
  • Yuan, H., Liu, H., Tai, W., Wang, F., Zhang, Y., Yao, S., Ran, T., Lu, S., Ke, Z., Xiong, X., Xu, J., Chen, Y., & Lu, T. (2013). Molecular modelling on small molecular CDK2 inhibitors: An integrated approach using a combination of molecular docking, 3D-QSAR and pharmacophore modelling. SAR and QSAR in Environmental Research, 24(10), 795–817. https://doi.org/10.1080/1062936X.2013.815655
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews. Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559
  • Zuccotto, F., Ardini, E., Casale, E., & Angiolini, M. (2010). Through the “gatekeeper door”: Exploiting the active kinase conformation. Journal of Medicinal Chemistry, 53(7), 2681–2694. https://doi.org/10.1021/jm901443h

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.