312
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1

ORCID Icon, , ORCID Icon, , , , & ORCID Icon show all
Pages 9053-9066 | Received 20 Feb 2021, Accepted 22 Apr 2021, Published online: 13 May 2021

References

  • Amir, M., Ahamad, S., Mohammad, T., Jairajpuri, D. S., Hasan, G. M., Dohare, R., Islam, A., Ahmad, F., & Hassan, M. I. (2021). Investigation of conformational dynamics of Tyr89Cys mutation in protection of telomeres 1 gene associated with familial melanoma. Journal of Biomolecular Structure and Dynamics, 39, 35–44. https://doi.org/10.1080/07391102.2019.1705186
  • Amir, M., Ahmad, S., Ahamad, S., Kumar, V., Mohammad, T., Dohare, R., Alajmi, M. F., Rehman, T., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020a). Impact of Gln94Glu mutation on the structure and function of protection of telomere 1, a cause of cutaneous familial melanoma. Journal of Biomolecular Structure and Dynamics, 38(5), 1514–1524. https://doi.org/10.1080/07391102.2019.1610500
  • Amir, M., Khan, P., Queen, A., Dohare, R., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, I. (2020). Structural features of nucleoprotein CST/Shelterin complex involved in the telomere maintenance and its association with disease mutations. Cells, 9(2), 359. https://doi.org/10.3390/cells9020359
  • Amir, M., Kumar, V., Dohare, R., Rehman, M. T., Hussain, A., Alajmi, M. F., El-Seedi, H. R., Hassan, H. M. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigating architecture and structure-function relationships in cold shock DNA-binding domain family using structural genomics-based approach. International Journal of Biological Macromolecules, 133, 484–494. https://doi.org/10.1016/j.ijbiomac.2019.04.135
  • Amir, M., Kumar, V., Mohammad, T., Dohare, R., Hussain, A., Rehman, M. T., Alam, P., Alajmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2019a). Investigation of deleterious effects of nsSNPs in the POT1 gene: A structural genomics-based approach to understand the mechanism of cancer development. Journal of Cellular Biochemistry, 120, 10281–10294. https://doi.org/10.1002/jcb.28312
  • Amir, M., Kumar, V., Mohammad, T., Dohare, R., Rehman, M. T., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2019). Structural and functional impact of non-synonymous SNPs in the CST complex subunit TEN1: Structural genomics approach. Bioscience Reports, 39, 31.
  • Badgujar, N. V., Tarapara, B. V., & Shah, F. D. (2019). Computational analysis of high-risk SNPs in human CHK2 gene responsible for hereditary breast cancer: A functional and structural impact. PloS One, 14(8), e0220711. https://doi.org/10.1371/journal.pone.0220711
  • Bejarano, L., Schuhmacher, A. J., Méndez, M., Megías, D., Blanco-Aparicio, C., Martínez, S., Pastor, J., Squatrito, M., & Blasco, M. A. (2017). Inhibition of TRF1 telomere protein impairs tumor initiation and progression in glioblastoma mouse models and patient-derived xenografts. Cancer Cell, 32, 590–607.e594. https://doi.org/10.1016/j.ccell.2017.10.006
  • Bianchi, A., Smith, S., Chong, L., Elias, P., & De Lange, T. (1997). TRF1 is a dimer and bends telomeric DNA. The EMBO Journal, 16, 1785–1794. https://doi.org/10.1093/emboj/16.7.1785
  • Bianchi, A., Stansel, R. M., Fairall, L., Griffith, J. D., Rhodes, D., & De Lange, T. (1999). TRF1 binds a bipartite telomeric site with extreme spatial flexibility. The EMBO Journal, 18, 5735–5744. https://doi.org/10.1093/emboj/18.20.5735
  • Biswas, S., & Bagchi, A. (2021). Mutational Impact on “In-Between-Ring” (IBR) domain of PARKIN on protein stability and function. Applied Biochemistry and Biotechnology, 1–14. https://doi.org/10.1007/s12010-021-03491-2
  • Biswas, S., Roy, R., Biswas, R., & Bagchi, A. (2020). Structural analysis of the effects of mutations in Ubl domain of Parkin leading to Parkinson’s disease. Gene, 726, 144186. https://doi.org/10.1016/j.gene.2019.144186
  • Cao, H., Zhai, Y., Ji, X., Wang, Y., Zhao, J., Xing, J., An, J., & Ren, T. (2020). Non-coding TERRA inhibits the progression of hepatocellular carcinoma via regulating telomerase-mediated telomere length. Cancer Science, 111(8), 2789–2802. https://doi.org/10.1111/cas.14442
  • Chang, S., Hu, J.-p., Lin, P.-y., Jiao, X., & Tian, X.-h. (2010). Substrate recognition and transport behavior analyses of amino acid antiporter with coarse-grained models. Molecular BioSystems, 6, 2430–2438. https://doi.org/10.1039/c005266c
  • Chen, H., & Panagiotopoulos, A. Z. (2019). Molecular modeling of surfactant micellization using solvent-accessible surface area. Langmuir, 35, 2443–2450. https://doi.org/10.1021/acs.langmuir.8b03440
  • Chen, J., Wang, J., & Zhu, W. (2014). Binding modes of three inhibitors 8CA, F8A and I4A to A-FABP studied based on molecular dynamics simulation. PloS One, 9(6), e99862. https://doi.org/10.1371/journal.pone.0099862
  • Chen, Y., Yang, Y., van Overbeek, M., Donigian, J. R., Baciu, P., de Lange, T., & Lei, M. (2008). A shared docking motif in TRF1 and TRF2 used for differential recruitment of telomeric proteins. Science, 319, 1092–1096. https://doi.org/10.1126/science.1151804
  • Collins, K. (2006). The biogenesis and regulation of telomerase holoenzymes. Nature Reviews Molecular Cell Biology, 7, 484–494. https://doi.org/10.1038/nrm1961
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. In Protein dynamics (pp. 193–226). Humana Press, Totowa, NJ: Springer.
  • de Lange, T. (2002). Protection of mammalian telomeres. Oncogene, 21(4), 532–540. https://doi.org/10.1038/sj.onc.1205080
  • De Lange, T. (2004). T-loops and the origin of telomeres. Nature Reviews Molecular Cell Biology, 5, 323–329. https://doi.org/10.1038/nrm1359
  • De Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes & Development, 19, 2100–2110. https://doi.org/10.1101/gad.1346005
  • Fairall, L., Chapman, L., Moss, H., de Lange, T., & Rhodes, D. (2001). Structure of the TRFH dimerization domain of the human telomeric proteins TRF1 and TRF2. Molecular Cell, 8, 351–361. https://doi.org/10.1016/S1097-2765(01)00321-5
  • Fatima, S., Mohammad, T., Jairajpuri, D. S., Rehman, M. T., Hussain, A., Samim, M., Ahmad, F. J., Alajmi, M. F., & Hassan, M. I. (2020). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure and Dynamics, 38, 3610–3620. https://doi.org/10.1080/07391102.2019.1664937
  • Giardini, M. A., Segatto, M., da Silva, M. S., Nunes, V. S., & Cano, M. I. N. (2014). Telomere and telomerase biology. Progress in Molecular Biology and Translational Science, 125, 1–40.
  • Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., & De Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell, 97(4), 503–514. https://doi.org/10.1016/S0092-8674(00)80760-6
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M., AlAjmi, M. F., Islam, A., Ahmad, F., & Hassan, M. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635. https://doi.org/10.1155/2020/2094635
  • Harrach, M. F., & Drossel, B. (2014). Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. The Journal of Chemical Physics, 140(17), 174501. https://doi.org/10.1063/1.4872239
  • Hospital, A., Goñi, J. R., Orozco, M., & Gelpí, J. L. (2015). Molecular dynamics simulations: Advances and applications. Advances and Applications in Bioinformatics and Chemistry: AABC, 8, 37.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5, 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Jubb, H. C., Higueruelo, A. P., Ochoa-Montaño, B., Pitt, W. R., Ascher, D. B., & Blundell, T. L. (2017). Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. Journal of Molecular Biology, 429, 365–371. https://doi.org/10.1016/j.jmb.2016.12.004
  • Khan, S., Bjij, I., Betz, R. M., & Soliman, M. E. (2018). Reversible versus irreversible inhibition modes of ERK2: A comparative analysis for ERK2 protein kinase in cancer therapy. Future Medicinal Chemistry, 10, 1003–1015. https://doi.org/10.4155/fmc-2017-0275
  • Khan, S., Bjij, I., & Soliman, M. E. (2019). Selective covalent inhibition of “Allosteric Cys121” distort the binding of PTP1B enzyme: A novel therapeutic approach for cancer treatment. Cell Biochemistry and Biophysics, 77, 203–211. https://doi.org/10.1007/s12013-019-00882-5
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–14.
  • Kim, S.-h., Kaminker, P., & Campisi, J. (1999). TIN2, a new regulator of telomere length in human cells. Nature Genetics, 23(4), 405–412. https://doi.org/10.1038/70508
  • Kumalo, H. M., Bhakat, S., & Soliman, M. E. (2016). Investigation of flap flexibility of β-secretase using molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 34, 1008–1019. https://doi.org/10.1080/07391102.2015.1064831
  • Lee, T.-S., Cerutti, D. S., Mermelstein, D., Lin, C., LeGrand, S., Giese, T. J., Roitberg, A., Case, D. A., Walker, R. C., & York, D. M. (2018). GPU-accelerated molecular dynamics and free energy methods in Amber18: Performance enhancements and new features. Journal of Chemical Information and Modeling, 58, 2043–2050. https://doi.org/10.1021/acs.jcim.8b00462
  • Li, B., Qiao, R., Wang, Z., Zhou, W., Li, X., Xu, W., & Rao, Z. (2016). Crystal structure of a tankyrase 1–telomere repeat factor 1 complex. Acta Crystallographica Section F: Structural Biology Communications, 72, 320–327. https://doi.org/10.1107/S2053230X16004131
  • Lin, Y., Pan, D., Li, J., Zhang, L., & Shao, X. (2017). Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. The Journal of Chemical Physics, 146, 124108. https://doi.org/10.1063/1.4978807
  • MacNeil, D. E., Bensoussan, H. J., & Autexier, C. (2016). Telomerase regulation from beginning to the end. Genes, 7(9), 64. https://doi.org/10.3390/genes7090064
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PloS One, 10, e0119264. https://doi.org/10.1371/journal.pone.0119264
  • McEachern, M. J., Krauskopf, A., & Blackburn, E. H. (2000). Telomeres and their control. Annual Review of Genetics, 34, 331–358. https://doi.org/10.1146/annurev.genet.34.1.331
  • Mohammad, T., Amir, M., Prasad, K., Batra, S., Kumar, V., Hussain, A., Rehman, M. T., AlAjmi, M. F., & Hassan, M. I. (2020). Impact of amino acid substitution in the kinase domain of Bruton tyrosine kinase and its association with X-linked agammaglobulinemia. International Journal of Biological Macromolecules, 164, 2399–2408. https://doi.org/10.1016/j.ijbiomac.2020.08.057
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Naqvi, A. A. T., Mohammad, T., Hasan, G. M., & Hassan, M. I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18, 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Paladin, L., Piovesan, D., & Tosatto, S. C. (2017). SODA: Prediction of protein solubility from disorder and aggregation propensity. Nucleic Acids Research, 45, W236–W240. https://doi.org/10.1093/nar/gkx412
  • Pandurangan, A. P., Ochoa-Montaño, B., Ascher, D. B., & Blundell, T. L. (2017). SDM: A server for predicting effects of mutations on protein stability. Nucleic Acids Research, 45, W229–W235. https://doi.org/10.1093/nar/gkx439
  • Patel, T., Vasan, R., Gupta, D., Patel, J., & Trivedi, M. (2015). Shelterin proteins and cancer. Asian Pacific Journal of Cancer Prevention, 16, 3085–3090. https://doi.org/10.7314/apjcp.2015.16.8.3085
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., & Iakoucheva, L. M. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communication, 11, 5918.
  • Perez, A., MacCallum, J. L., Brini, E., Simmerling, C., & Dill, K. A. (2015). Grid-based backbone correction to the ff12SB protein force field for implicit-solvent simulations. Journal of Chemical Theory and Computation, 11, 4770–4779. https://doi.org/10.1021/acs.jctc.5b00662
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014a). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42, W314–W319. https://doi.org/10.1093/nar/gku411
  • Pires, D. E., Ascher, D. B., & Blundell, T. L. (2014b). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics, 30, 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Pucci, F., Bourgeas, R., & Rooman, M. (2016). High-quality thermodynamic data on the stability changes of proteins upon single-site mutations. Journal of Physical and Chemical Reference Data, 45(2), 023104. https://doi.org/10.1063/1.4947493
  • Quan, L., Lv, Q., & Zhang, Y. (2016). STRUM: Structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics, 32, 2936–2946. https://doi.org/10.1093/bioinformatics/btw361
  • Roe, D. R., & Cheatham, T. E. III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9, 3084–3095. https://doi.org/10.1021/ct400341p
  • Savage, S. A., Calado, R. T., Xin, Z.-T., Ly, H., Young, N. S., & Chanock, S. J. (2006). Genetic variation in telomeric repeat binding factors 1 and 2 in aplastic anemia. Experimental Hematology, 34, 664–671. https://doi.org/10.1016/j.exphem.2006.02.008
  • Schmutz, I., & de Lange, T. (2016). Shelterin. Current Biology, 26, R397–R399. https://doi.org/10.1016/j.cub.2016.01.056
  • Schrödinger. Protein preparation wizard. https://www.schrodinger.com/protein-preparation-wizard
  • Seifert, E. (2014). OriginPro 9.1: Scientific data analysis and graphing software, Software review. ACS Publications.
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6, 1509–1519. https://doi.org/10.1021/ct900587b
  • Stewart, J. A., Chaiken, M. F., Wang, F., & Price, C. M. (2012). Maintaining the end: Roles of telomere proteins in end-protection, telomere replication and length regulation. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 730(1–2), 12–19. https://doi.org/10.1016/j.mrfmmm.2011.08.011
  • Tokuriki, N., & Tawfik, D. S. (2009). Stability effects of mutations and protein evolvability. Current Opinion in Structural Biology, 19, 596–604. https://doi.org/10.1016/j.sbi.2009.08.003
  • Turner, K. J., Vasu, V., & Griffin, D. K. (2019). Telomere biology and human phenotype. Cells, 8(1), 73. https://doi.org/10.3390/cells8010073
  • Van Steensel, B., & De Lange, T. (1997). Control of telomere length by the human telomeric protein TRF1. Nature, 385, 740–743. https://doi.org/10.1038/385740a0
  • Wan, H., Hu, J.-p., Tian, X.-h., & Chang, S. (2013). Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d. Physical Chemistry Chemical Physics, 15, 1241–1251. https://doi.org/10.1039/c2cp41388d
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25, 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wu, Q., Han, D., Zhang, J., & Li, X. (2019). Expression of telomere repeat binding factor 1 and TRF2 in Alzheimer’s disease and correlation with clinical parameters. Neurological Research, 41(6), 504–509. https://doi.org/10.1080/01616412.2019.1580456
  • Xin, H., Liu, D., & Songyang, Z. (2008). The telosome/shelterin complex and its functions. Genome Biology, 9, 1–7. https://doi.org/10.1186/gb-2008-9-9-232
  • Yates, C. M., & Sternberg, M. J. (2013). The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein–protein interactions. Journal of Molecular Biology, 425, 3949–3963. https://doi.org/10.1016/j.jmb.2013.07.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.