348
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Targeting p53-MDM2 interactions to identify small molecule inhibitors for cancer therapy: beyond “Failure to rescue”

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 9158-9176 | Received 07 Jan 2021, Accepted 25 Apr 2021, Published online: 14 May 2021

References

  • Alamri, M. A., & Alamri, M. A. (2019). Pharmacophore and docking-based sequential virtual screening for the identification of novel Sigma 1 receptor ligands. Bioinformation, 15(8), 586–595. https://doi.org/10.6026/97320630015586
  • Allen, J. G., Bourbeau, M. P., Wohlhieter, G. E., Bartberger, M. D., Michelsen, K., Hungate, R., Gadwood, R. C., Gaston, R. D., Evans, B., Mann, L. W., Matison, M. E., Schneider, S., Huang, X., Yu, D., Andrews, P. S., Reichelt, A., Long, A. M., Yakowec, P., Yang, E. Y., Lee, T. A., & Oliner, J. D. (2009). Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. Journal of Medicinal Chemistry, 52(22), 7044–7053. https://doi.org/10.1021/jm900681h
  • Atatreh, N., Ghattas, M. A., Bardaweel, S. K., Rawashdeh, S. A., & Sorkhy, M. I. (2018). Identification of new inhibitors of Mdm2-p53 interaction via pharmacophore and structure based virtual screening. Drug Design. Drug Design, Development and Therapy, 12, 3741–3752. https://doi.org/10.2147/DDDT.S182444
  • Bauer, M. R., Ibrahim, T. M., Vogel, S. M., & Boeckler, F. M. (2013). Evaluation and optimization of virtual screening workflows with DEKOIS 2.0-a public library of challenging docking bench mark sets. Journal of Chemical Information and Modeling, 53(6), 1447–1462. https://doi.org/10.1021/ci400115b
  • Behera, D. K., Behera, P. M., Acharya, L., & Dixit, A. (2017). Pharmacophore modelling, virtual screening and molecular docking studies on PLD1 inhibitors. SAR and QSAR in Environmental Research, 28(12), 991–1009. https://doi.org/10.1080/1062936X.2017.1393774
  • Borah, D., Gogoi, D., & Yadav, R. N. S. (2015). Computer Aided Screening, Docking and ADME Study of Mushroom Derived Compounds as Mdm2 Inhibitor, a Novel Approach. National Academy Science Letters, 38(6), 469–473. https://doi.org/10.1007/s40009-015-0366-4
  • Braga, R. C., & Andrade, C. H. (2013). Assessing the performance of 3D pharmacophore models in virtual screening: How good are they? Current Topics in Medicinal Chemistry, 13(9), 1127–1138. https://doi.org/10.2174/1568026611313090010
  • Cereto-Massague, A., Ojeda, M. J., Valls, C., Mulero, M., Garcia-Vallve, S., & Pujadas, G. (2015). Molecular fingerprint similarity search in virtual screening. Methods (San Diego, California), 71, 58–63. https://doi.org/10.1016/j.ymeth.2014.08.005
  • Chaput, L., Martinez-Sanz, J., Quiniou, E., Rigolet, P., Saettel, N., & Mouawad, L. (2016). Benchmark of four popular virtual screening programs: Construction of active/decoy dataset remains a major determinant of measured performance. Journal of Cheminformatics, 8(1), 1–17. https://doi.org/10.1186/s13321-016-0167-x
  • Chen, J., Wang, J., Xu, B., Zhu, W., & Li, G. (2011). Insight into mechanism of small molecule inhibitors of MDM2-p53 interaction: Molecular dynamics simulation and free energy analysis. Journal of Molecular Graphics and Modelling, 30, 46–53. https://doi.org/10.1016/j.jmgm.2011.06.003
  • Chen, L., Yin, H., Farooqi, B., Sebti, S., Hamilton, A. D., & Chen, J. (2005). p53 A-Helix mimetics antagonize p53/MDM2 interaction and activate p53. Molecular Cancer Therapeutics, 4(6), 1019–1025. https://doi.org/10.1158/1535-7163.MCT-04-0342
  • Cheng, F., Li, W., Zhou, Y., Jie, S., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chukwuemeka, P. O., Olowosoke, C. B., & Oretade, O. M. (2020). SARS-CoV-2 recombinant spike protein-based vaccine: A promising candidate against the recent imperial coronavirus disease (COVID-19). International Journal of Pathogen Research, 4(3), 40–62. https://doi.org/10.9734/ijpr/2020/v4i330115
  • Clark, D. E. (2008). What has virtual screening ever done for drug discovery? Expert Opinion on Drug Discovery, 3(8), 841–851. https://doi.org/10.1517/17460441.3.8.841
  • Cruz, J. V., Neto, M. F. A., Silva, L. B., Ramos, R. D. S., Costa, J. D. S., Brasil, D. S. B., Lobato, C. C., da Costa, G. V., Bittencourt, J. A. H. M., da Silva, C. H. T. P., Leite, F. H. A., & Santos, C. B. R. (2018). Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening. Molecules, 23(2), 453. https://doi.org/10.3390/molecules23020453
  • D. E Shaw Research. (2020). Desmond molecular dynamics system. In Maestro-Desmond interoperability tools.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N-log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • DeLano, W. L. (2002). PyMOL: An open-source molecular graphics tool. CCP4 Newsletter Protein Crystallograph, 40(1), 82–92.
  • Ding, Q., Zhang, Z., Liu, J., Jiang, N., Zhang, J., Ross, T. M., Chu, X., Bartkovitz, D., Podlaski, F., Janson, C., Tovar, C., Filipovic, Z. M., Higgins, B., Glenn, K., Packman, K., Vassilev, L. T., & Graves, B. (2013). Discovery of RG7388, a potent and selective p53 − MDM2 inhibitor in clinical development. Journal of Medicinal Chemistry, 56(14), 5979–5983. https://doi.org/10.1021/jm400487c
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening. Journal of Computer-Aided Molecular Design, 20(10-11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Estrada-Ortiz, N., Neochoritis, C. G., & Domling, A. (2016). How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures. ChemMedChem., 11, 757–772. https://doi.org/10.1002/cmdc.201500487
  • Fortuna, A., Alves, G., & Falcao, A. (2011). In vitro and in vivo relevance of the p-glycoprotein probe substrates in drug discovery and development: Focus on rhodamine 123, digoxin and talinolol. The Journal of Bioequivalence and Bioavailability, 1(2), 1–23.
  • Froufe, H. J. C., Abreu, R. M. V., & Ferreira, I. C. F. R. (2013). Virtual screening of low molecular weight mushrooms compounds as potential Mdm2 inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 28(3), 569–575. https://doi.org/10.3109/14756366.2012.658787
  • Galatin, P. S., & Abraham, D. J. (2004). A nonpeptidic sulfonamide inhibits the p53-mdm2 interaction and activates p53-dependent transcription in mdm2-overexpressing cells. Journal of Medicinal Chemisty, 47(17), 4163–4165. https://doi.org/10.1021/jm034182u
  • Gessier, F., Kallen, J., Jacoby, E., Chène, P., Stachyra-Valat, T., Ruetz, S., Jeay, S., Holzer, P., Masuya, K., & Furet, P. (2015). Discovery of dihydroisoquinolinone derivatives as novel inhibitors of the p53–MDM2 interaction with a distinct binding mode. Bioorganic & Medicinal Chemistry Letters, 25(17), 3621–3625. https://doi.org/10.1016/j.bmcl.2015.06.058
  • Gohil, C. J., & Noolvi, M. N. (2021). Design and in silico study of the novel small molecule MDM2 inhibitors. Biointerface Research in Applied Chemistry, 11(1), 8052–8064. https://doi.org/10.33263/BRIAC111.80528064
  • Gonzalez, A. Z., Eksterowicz, J., Bartberger, M. D., Beck, H. P., Canon, J., Chen, A., Chow, D., Duquette, J., Fox, B. M., Fu, J., Huang, X., Houze, J. B., Jin, L., Li, Y., Li, Z., Ling, Y., Lo, M., Long, A. M., Mcgee, L. R., … Sun, D. (2014). Selective and potent morpholinone inhibitors of the MDM2 − p53 protein − protein interaction. Journal of Medicinal Chemistry, 57(6), 2472–2488. https://doi.org/10.1021/jm401767k
  • Hardcastle, I. R., Ahmed, S. U., Atkins, H., Farnie, G., Golding, B. T., Griffin, R. J., Guyenne, S., Hutton, C., Kallblad, P., Kemp, S. J., Kitching, M. S., Newell, D. R., Norbedo, S., Northen, J. S., Reid, R. J., Saravanan, K., Willems, H. M. G., & Lunec, J. (2006). Small-molecule inhibitors of the MDM2-p53 protein-protein interaction based on an isoindolinone scaffold. Journal of Medicinal Chemistry, 49, 6209–6221. https://doi.org/10.1021/jm0601194
  • Houston, D. R., Yen, L.-H., Pettit, S., & Walkinshaw, M. D. (2015). Structure-and ligand-based virtual screening identifies new scaffolds for inhibitors of the oncoprotein MDM2. PLoS One., 10(4), e0121424. https://doi.org/10.1371/journal.pone.0121424
  • Huang, Y., Wolf, S., Koes, D., Popowicz, G. M., Camacho, C. J., Holak, T. A., & Domling, A. (2012). Exhaustive fluorine scanning towards potent p53-Mdm2 antagonists. ChemMedChem., 7(1), 49–52. https://doi.org/10.1002/cmdc.201100428
  • Idris, M. O., Yekeen, A. A., Alakanse, O. S., & Durojaye, O. A. (2020). Computer-aided screening for potential TMPRSS2 inhibitors: A combination of pharmacophore modelling, molecular docking and molecular dynamics simulation approach. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/073911102.2020.1792346
  • Iwaloye, O., Elekofehinti, O. O., Oluwarotimi, E. A., Kikiowo, B. I., & Fadipe, T. M. (2020). Insight into glycogen synthase kinase-3β inhibitory activity of phyto-constituents from Melissa officinalis: In silico studies. In Silico Pharmacology, 8(1), 2. https://doi.org/10.1007/s40203-020-00054-x
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Koes, D. R., & Camacho, C. J. (2012). ZINCPharmer: Pharmacophore search of the zinc database. Nucleic Acids Research, 40(W1), W409–414. https://doi.org/10.1093/nar/gks378
  • Kullappan, A., A., & Sudha, R. (2019). Identification of potential inhibitors for Klebsiella pneumoniae carbapenemase-3: A molecular docking and dynamics study. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2018.1556737
  • Kumar, A., & Zhang, K. Y. (2015). Hierarchical virtual screening approaches in small molecule drug discovery. Methods (San Diego, California), 71, 26–37. https://doi.org/10.1016/j.ymeth.2014.07.007
  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., & Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science, 274(5289), 948–953. https://doi.org/10.1126/science.274.5289.948
  • Lauria, A., Tutone, M., Ippolito, M., Pantano, L., & Almerico, A. (2010). Molecular modelling approaches in the discovery of new drugs for anti-cancer therapy: The investigation and its inhibition by small molecules. Current Medicinal Chemistry, 17(28), 3142–3154. https://doi.org/10.2174/092986710792232021
  • Leao, M., Gomes, S., Pedraza-Chaverri, J., Machado, N., Sousa, E., Pinto, M., Inga, A., Pereira, C., & Saraiva, L. (2013). α- Mangostin and gambogic acid as potential inhibitors of the p53 − MDM2 interaction revealed by a yeast approach. Journal of Natural Products, 76, 774–778. https://doi.org/10.1021/np400049j
  • Lipinski, C. (2002). Poor aqueous solubility-An industry wide problem in drug discovery. American Pharmaceutical Review, 5(3), 82–85.
  • Lu, Y., Nikolovska-Coleska, Z., Fang, X., Gao, W., Shangary, S., Qiu, S., Qin, D., & Wang, S. (2006). Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2) -p53 interaction through an integrated, virtual database screening strategy. Journal of Medicinal Chemistry, 49(13), 3759–3762. https://doi.org/10.1021/jm060023
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nose–Hoover chains-the canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D., & Klein, M. L. (1994). Constant-pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Miyazaki, M., Naito, H., Sugimoto, Y., Yoshida, K., Kawato, H., Okayama, T., Shimizu, H., Miyazaki, M., Kitagawa, M., Seki, T., Fukutake, S., Shiose, Y., Aonuma, M., & Soga, T. (2013). Synthesis and evaluation of novel orally active p53-MDM2 interaction inhibitors. Bioorganic & Medicinal Chemistry, 21(14), 4319–4331. https://doi.org/10.1016/j.bmc.2013.04.056
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates autodock4 and autodocktools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Popowicz, G. M., Czarna, A., Wolf, S., Wang, K., Wang, W., Dömling, A., & Holak, T. A. (2010). Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle, 9(5), 1104–1111. https://doi.org/10.4161/cc.9.6.10956
  • Qin, J.-J., Xin, L., Hunt, C., Wang, W., Wang, H., & Zhang, R. (2018). Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes and Diseases, 5, 204–219. https://doi.org/10.1016/j.gendis.2018.07.002
  • Raj, D. S., Kottaisamy, C. P. D., Hopper, W., & Sankaran, U. (2021). Identification of immucillin analogue natural compounds to inhibit Helicobacter pylori MTAN through high throughput virtual screening and molecular dynamics simulation. In Silico Pharmacology, 9(1), 22. In https://doi.org/10.1007/s40203-021-00081-2
  • Riaz, M., Ashfaq, U. A., Quasim, M., Yasmeen, E., Qamar, U. L., Muhammad, T., & Anwar, F. (2017). Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning. Anti-Cancer Drugs, 28(9), 1032–1038. https://doi.org/10.1097/CAD.0000000000000548
  • Rose, P. W., Bi, C., Bluhm, W. F., Christie, C. H., Dimitropoulos, D., Dutta, S., Green, R. K., Goodsell, D. S., Prlic, A., Quesada, M., Quinn, G. B., Ramos, A. G., Westbrook, J. D., Young, J., Zardecki, C., Berman, H. M., & Bourne, P. E. (2012). The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Research, 41(D1), D475–482. https://doi.org/10.1093/nar/gks1200
  • Schrodinger (2017). Schrodinger Release 2017-3: LigPrep.
  • Shapovalov, M. S., & Dunbrack, R. L. J. (2011). A Smooth backbone-dependent rotamer library for protein derived from adaptive kernel density estimates and regressions. Structure, 19(6), 844–858. [Database] https://doi.org/10.1016/j.str.2011.03.019
  • Sheridan, R. P., Singh, S. B., Fluder, E. M., & Kearsley, S. K. (2001). Protocols for bridging the peptide to nonpeptide gap in topological similarities. Journal of Chemical Information and Computer Sciences, 41(5), 1395–1406. https://doi.org/10.1021/ci0100144
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Stoll, R., Renner, C., Hansen, S., Palme, S., Klein, C., Belling, A., Zeslawski, W., Kamionka, M., Rehm, T., Muhlhahn, P., Schumacher, R., Hesse, F., Kaluza, B., Voelter, W., Engh, R. A., & Holak, T. A. (2001). Chalcone derivatives antagonize interactions between the human oncoprotein. Biochemistry, 40(2), 336–344. https://doi.org/10.1021/bi000930v
  • Tripathi, A. C., Sonar, P. K., Rathore, R., & Saraf, S. K. (2016). Structural insight into the molecular design of HER2 inhibitors. Open Pharmaceutical Sciences Journal, 3(1), 164–181. https://doi.org/10.2174/1874844901603010164
  • Trott, O., & Olson, A. J. (2010). Software news and update autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computation Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Truchon, J. F., & Bayly, C. I. (2007). Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. Journal of Chemical Information and Modeling, 47(2), 488–508. https://doi.org/10.1021/ci600426e
  • Turiso, F. G. D., Sun, D., Rew, Y., Bartberger, M. D., Beck, H. P., Canon, J., Chen, A., Chow, D., Correll, L., Huang, X., Julian, L. D., Kayser, F., Lo, M., Long, A. M., Mcminn, D., Oliner, J. D., Osgood, T., Powers, J. P., Saiki, A. Y., … Olson, S. H. (2013). Rational design and binding mode duality of MDM2 − p53 inhibitors. Journal of Medicinal Chemistry, 56(10), 4053–4070. https://doi.org/10.1021/jm400293z
  • Wade, M., Wang, Y. V., & Wahl, G. M. (2010). The p53 orchestra: Mdm2 and Mdmx set the tone. Trends in Cell Biology, 20(5), 299–309. https://doi.org/10.1016/j.tcb.2010.01.009
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions Clean up structure. "Protein Engineering, Design and Selection", 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Warner, W. A., Sanchez, R., Dawoodian, A., Li, E., & Momand, J. (2012). Identification of FDA-approved Drugs that Computationally Bind to MDM2. Chemical Biology and Drug Design, 80, 631–637. https://doi.org/10.1111/j.1747-0285.2012.01428.x
  • Yu, M., Wang, Y., Zhu, J., Bartberger, M. D., Canon, J., Chen, A., Chow, D., Eksterowicz, J., Fox, B., Fu, J., Gribble, M., Huang, X., Li, Z., Liu, J. (J. )., Lo, M-c., McMinn, D., Oliner, J. D., Osgood, T., Rew, Y., … Sun, D. (2014). Discovery of potent and simplified piperidinone-based inhibitors of the MDM2 − p53 interaction. ACS Medicinal Chemistry Letters, 5(8), 894–899. https://doi.org/10.1021/ml500142b
  • Yu, Z., Zhuang, C., Wu, Y., Guo, Z., Li, J., Dong, G., Yao, J., Sheng, C., Miao, Z., & Zhang, W. (2014). Design, synthesis and biological evaluation of sulfamide and triazole benzodiazepines as novel p53-MDM2 inhibitors. International Journal of Molecular Sciences, 15(9), 15741–15753. https://doi.org/10.3390/ijms150915741
  • Zhao, W., Hevener, K. E., White, S. W., Lee, R. E., & Boyett, J. M. (2009). A statistical framework to evaluate virtual screening. BMC Bioinformatics, 10(1), 225. https://doi.org/10.1186/1471-2105-10-225
  • Zhao, Y., Bernard, D., & Wang, S. (2013). Small molecule inhibitors of MDM2-p53 and MDMX-p53 interactions as new cancer therapeutics. BioDiscovery, 8(8), 4. https://doi.org/10.7750/BioDiscovery.2013.8.4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.