189
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

BSA-drug-ZnO-PEI conjugates interaction with glycans of gp60 endothelial cell receptor protein for targeted drug delivery: a comprehensive spectroscopic study

, , &
Pages 9253-9269 | Received 04 Mar 2021, Accepted 28 Apr 2021, Published online: 21 May 2021

References

  • Abbasi, S., Paul, A., & Prakash, S. (2011). Investigation of siRNA loaded PEI-coated HAS NPs complexes for the treatment of breast cancer. Cell Biochemistry and Biophysics, 61(2), 277–287. https://doi.org/10.1007/s12013-011-9201-9
  • Altunbek, M., Keleştemur, S., Baran, G., & Çulha, M. (2018). Role of modification route for zinc oxide nanoparticles on protein structure and their effects on glioblastoma cells. International Journal of Biological Macromolecules, 118(Pt A), 271–278. https://doi.org/10.1016/j.ijbiomac.2018.06.059
  • Asani, S. C., Umrani, R. D., & Paknikar, K. M. (2016). In vitro studies on the pleotropic antidiabetic effects of zinc oxide nanoparticles. Nanomedicine (London, England), 11(13), 1671–1687. https://doi.org/10.2217/nnm-2016-0119
  • Bardhan, M., Mandal, G., & Ganguly, T. (2009). Steady state, time resolved, and circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein bovine serum albumin and to monitor the possible protein conformational changes. Journal of Applied Physics, 106(3), 034701–0347015. https://doi.org/10.1063/1.3190483
  • Beyth, N., Houri-Haddad, Y., Baraness-Hadar, L., Yudovin-Farber, I., Domb, A. J., & Weiss, E. I. (2008). Surface antimicrobial activity and biocompatibility of incorporated polyethylenimine nanoparticles. Biomaterials, 29(31), 4157–4163. − https://doi.org/10.1016/j.biomaterials.2008.07.003
  • Bhadra, P., Mitra, M. K., Das, G. C., Dey, R., & Mukherjee, S. (2011). Interaction of chitosan capped ZnO nanorods with Escherichia coli. Materials Science and Engineering: C, 31(5), 929–937. https://doi.org/10.1016/j.msec.2011.02.015
  • Bhogale, A., Patel, N., Sarpotdar, P., Mariam, J., Dongre, P. M., Miotello, A., & Kothari, D. C. (2013). Systematic investigation on the interaction of bovine serum albumin with ZnO nanoparticles using fluorescence spectroscopy. Colloids and Surfaces. B, Biointerfaces, 102, 257–264. https://doi.org/10.1016/j.colsurfb.2012.08.023
  • Bian, S. W., Mudunkotuwa, I. A., Rupasinghe, T., & Grassian, V. H. (2011). Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: Influence of pH, ionic strength, size, and adsorption of humic Acid. Langmuir : The ACS Journal of Surfaces and Colloids, 27(10), 6059–6068. https://doi.org/10.1021/la200570n
  • Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fiévet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870. https://doi.org/10.1021/nl052326h
  • Bruchez, M. J., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science (New York, N.Y.), 281(5385), 2013–2016. https://doi.org/10.1126/science.281.5385.2013
  • Chakraborti, S., Chatterjee, T., Joshi, P., Poddar, A., Bhattacharyya, B., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir : The ACS Journal of Surfaces and Colloids, 26(5), 3506–3513. https://doi.org/10.1021/la903118c
  • Chakraborti, S., Joshi, P., Chakravarty, D., Shanker, V., Ansari, Z. A., Singh, S. P., & Chakrabarti, P. (2012). Interaction of Polyethyleneimine-Functionalized ZnO Nanoparticles with bovine serum albumin. Langmuir : The ACS Journal of Surfaces and Colloids, 28(30), 11142–11152. https://doi.org/10.1021/la3007603
  • Chithrani, B. D., Ghazani, A. A., & Chan, W. C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters, 6(4), 662–668. https://doi.org/10.1021/nl052396o
  • Comenge, J., Sotelo, C., Romero, F., Gallego, O., Barnadas, A., Parada, T. G., Domínguez, F., & Puntes, V. F. (2012). Detoxifying antitumoral drugs via nanoconjugation: The case of gold nanoparticles and cisplatin. PLoS One, 7(10), e47562. https://doi.org/10.1371/journal.pone.0047562
  • De, M., Ghosh, P. S., & Rotello, V. M. (2008). Applications of Nanoparticles in Biology. Advanced Materials, 20(22), 4225–4241. https://doi.org/10.1002/adma.200703183
  • Desai, N. (2015). Nanoparticle albumin-bound anticancer agents. Advances in the Pharmaceutical Sciences Series, 20, 329–354.
  • Dingari, N. C., Horowitz, G. L., Kang, J. W., Dasari, R. R., & Barman, I. (2012). Raman Spectroscopy provides a powerful diagnostic tool for accurate determination of albumin glycation. Plos One, 7(2), e32406. https://doi.org/10.1371/journal.pone.0032406
  • EFSA CEF Panel On food contact materials, EU, flavourings and processing aids. (2015). Scientific Opinion on the safety evaluation of the substance zinc oxide, nanoparticles, uncoated and coated with [3-(methacryloxy) propyl] trimethoxysilane, for use in food contact materials. EFSA Journal., 13, 4063–4072.
  • Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release : Official Journal of the Controlled Release Society, 157(2), 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
  • Ferrari, M. (2005). Nature Review Cancer nanotechnology: Opportunities and challenges. Cancer, 5, 161–171.
  • Han, H., Wang, J., Chen, T., Yin, L., Jin, Q., & Ji, J. (2017). Enzyme-sensitive gemcitabine conjugated albumin nanoparticles as a versatile theranostic nanoplatform for pancreatic cancer treatment. Journal of Colloid and Interface Science, 507, 217–224. https://doi.org/10.1016/j.jcis.2017.07.047
  • Harada, I., & Takeuchi, H. (1986). Raman and ultraviolet resonance Raman of proteins and related compounds. Spectroscopy of Biological Systems, 13, 113–175.
  • Hassanian, M., Aryapour, H., Goudarzi, A., & Javan, M. B. (2021). Are zinc oxide nanoparticles safe? A structural study on human serum albumin using in vitro and in silico methods. Journal of Biomolecular Structure and Dynamics, 39(1), 330–333. https://doi.org/10.1080/07391102.2019.1711189
  • Jahanban-Esfahlan, A., & Panahi-Azar, V. (2016). Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chemistry, 202, 426–431. https://doi.org/10.1016/j.foodchem.2016.02.026
  • Jahanban-Esfahlan, A., Panahi-Azar, V., & Sajedi, S. (2015). Spectroscopic and molecular docking studies on the interaction between N-acetyl cysteine and bovine serum albumin. Biopolymers, 103(11), 638–645. https://doi.org/10.1002/bip.22697
  • Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters, 279(1), 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
  • Joshi, P., Ansari, Z., Singh, S. P., & Shanker, V. (2009). Synthesis and characterization of highly fluorescent water dispersible ZnO quantum dots. Journal of Computational and Theoretical Nanoscience, 2, 360–363.
  • Joshi, P., Chakraborti, S., Chakrabarti, P., Haranath, D., Shanker, V., Ansari, Z. A., Singh, S. P., & Guptas, V. (2009). Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against Escherichia coli. Journal of Nanoscience and Nanotechnology, 9(11), 6427–6433. https://doi.org/10.1166/jnn.2009.1584
  • Kandagal, P. B., Ashoka, S., Seetharamappa, J., Shaikh, S. M. T., Jadegoud, Y., & Ijare, O. B. (2006). Study of the interaction of an anticancer drug with human and bovine serum albumin: Spectroscopic approach. Journal of Pharmaceutical and Biomedical Analysis, 14, 393–399.
  • Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., Shahreza, S., Sori, M., & Hamblin, M. R. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 13(11), 1609–1623. https://doi.org/10.1080/17425247.2016.1193149
  • Karthikeyan, S., Velmurugan, D., Aruna, P. R., Ganesan, S., Tamilkumar, P., & Bharanidharan, G. (2015). Binding Studies of Cisplatin with Human Serum Albumin. Trends in Biomaterials and Artificial Organs., 29, 273–278.
  • Kaszuba, M., Corbett, J., Watson, F. M., & Jones, A. (2010). High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1927), 4439–4451. https://doi.org/10.1098/rsta.2010.0175
  • Khade, B. S., Mathe, V. L., & Dongre, P. M. (2017). α-amylase binding to thermal plasma synthesized zinc oxide nanosheets: A fluorescence study. Journal of Luminescence, 187, 449–456. https://doi.org/10.1016/j.jlumin.2017.03.033
  • Kim, S. H., Jeong, J. H., Chun, K. W., & Park, T. G. (2005). Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate . Langmuir : The ACS Journal of Surfaces and Colloids, 21(19), 8852–8857. https://doi.org/10.1021/la0502084
  • Kratz, F. (2010). Albumin, a versatile carrier in oncology. Int. Journal of Clinical Pharmacology and Therapeutics, 48(07), 453–455. https://doi.org/10.5414/CPP48453
  • Krause-Heuer, M., Price, W. S., & Aldrich-Wright, J. R. (2012). Spectroscopic investigations on the interactions of potent platinum(II) anticancer agents with bovine serum albumin. Journal of Chemical Biology, 5(3), 105–113. https://doi.org/10.1007/s12154-012-0074-1
  • Kumari, N., Mathe, V. L., & Dongre, P. M. (2019). Albumin nanoparticles conjugates binding with glycan - A strategic approach for targeted drug delivery. International Journal of Biological Macromolecules, 126, 74–90. https://doi.org/10.1016/j.ijbiomac.2018.12.184
  • Kushwah, V., Agrawal, A. K., Dora, C. P., Mallinson, D., Lamprou, D. M., Gupta, R. C., & Jain, S. (2017). Novel gemcitabine conjugated albumin nanoparticles: A potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharmaceutical Research, 34(11), 2295–2311. https://doi.org/10.1007/s11095-017-2238-8
  • Lee, H. J., Lee, S. G., Oh, E. J., Chung, H. Y., Han, S. I., Kim, E. J., Seo, S. Y., Ghim, H. D., Yeum, J. H., & Choi, J. H. (2011). Antimicrobial polyethyleneimine-silver nanoparticles in a stable colloidal dispersion. Colloids and Surfaces B: Biointerfaces, 88(1), 505–511. − https://doi.org/10.1016/j.colsurfb.2011.07.041
  • Lee, S. Y., Huh, M. S., Lee, S., Lee, S. J., Chung, H., Park, J. H., Oh, Y. K., Choi, K., Kim, K., & Kwon, I. C. (2010). Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing . Journal of Controlled Release : Official Journal of the Controlled Release Society, 141(3), 339–346. https://doi.org/10.1016/j.jconrel.2009.10.007
  • Merlot, A. M., Kalinowski, D. S., & Richardson, D. R. (2014). Unraveling the mysteries of serum albumin—more than just a serum protein. Frontiers in Physiology, 5, 1–7. https://doi.org/10.3389/fphys.2014.00299
  • Neault, J. F., & Tajmir-Riahi, H. A. (1998). Interaction of cisplatin with human serum albumin. Drug binding mode and protein secondary structure. Biochimica et Biophysica Acta, 1384(1), 153–159. https://doi.org/10.1016/s0167-4838(98)00011-9
  • Nemecek, D., Stepanek, J., & Jr., & Thomas, G. J. (2013). Raman spectroscopy of proteins and nucleoproteins. Current Protocols in Protein Science, 17, 1–52.
  • Parize, R., Garnier, J. D., Appert, E., Chaix-Pluchery, O., & Consonni, V. (2018). Effects of polyethyleneimine and its molecular weight on the chemical bath deposition of ZnO nanowires. ACS Omega., 3(10), 12457–12464. https://doi.org/10.1021/acsomega.8b01641
  • Park, S. J., Borin, B. N., Martinez-Yamout, M. A., & Dyson, H. J. (2011). The client protein p53 adopts a molten globule-like state in the presence of Hsp90. Nature Structural & Molecular Biology, 18(5), 537–541. https://doi.org/10.1038/nsmb.2045
  • Prasad, A. R., Basheer, S. M., Williams, L., & Joseph, A. (2019). Highly selective inhibition of α-glucosidase by green synthesised ZnO nanoparticles - In-vitro screening and in-silico docking studies. International Journal of Biological Macromolecules, 139, 712–718. https://doi.org/10.1016/j.ijbiomac.2019.08.033
  • Rasmussen, J. W., Martinez, E., Louka, P., & Wingett, D. G. (2010). Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opinion on Drug Delivery, 7(9), 1063–1077. https://doi.org/10.1517/17425247.2010.502560
  • Schnitzer, J. E., & Bravo, J. (1993). High affinity binding, endocytosis, and degradation of conformationally modified albumins, Potential role of gp30 and gp18 as novel scavenger receptors. The Journal of Biological Chemistry, 268(10), 7562–7570.
  • Shen, H., Gu, Z., Jian, K., & Qi, J. (2013). In vitro study on the binding of gemcitabine to bovine serum albumin. Journal of Pharmaceutical and Biomedical Analysis, 75, 86–93. https://doi.org/10.1016/j.jpba.2012.11.021
  • Shiryaev, M. A., Jin, Y. J., Bong, H. C., & Baranov, A. (2017). ZnO nanoparticle modification by Polyethylenimine for Biomolecule Conjugation. Nanotechnologies in Russia, 12(11-12), 613–619. https://doi.org/10.1134/S199507801706009X
  • Siamwiza, M. N., Lord, R. C., Chen, M. C., Takamatsu, T., Harada, I., Matsuura, H., & Shimanouchi, T. (1975). Interpretation of the doublet at 850 and 830 cm−1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry, 14(22), 4870–4876. https://doi.org/10.1021/bi00693a014
  • Sjöberg, B., Foley, S., Cardey, B., & Enescu, M. (2014). An experimental and theoretical study of the amino acid side chain Raman bands in proteins. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 128, 300–311. https://doi.org/10.1016/j.saa.2014.02.080
  • Sun, S. K., Wang, H. F., & Yan, X. P. (2011). A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chemical Communications (Cambridge, England), 47(13), 3817–3819. − https://doi.org/10.1039/c0cc04463f
  • Syame, S. M., Eisa, Z. M., Eltayeb, R., & Hakim, A. S. (2018). Synthesis and Characterization of Cisplatin-Loaded BSA (Bovine Serum Albumin) Nanoparticles as Drug Delivery System against Pancreatic Cancer Cells. Journal of Pharmacy, 8, 39–48.
  • Tabibiazar, M., Davaran, S., Hashemi, M., Homayonirad, A., Rasoulzadeh, F., Hamishehkar, H., & Mohammadifar, M. A. (2015). Design and fabrication of a food-grade albumin-stabilized nano emulsion. Food Hydrocolloids., 44, 220–228. https://doi.org/10.1016/j.foodhyd.2014.09.005
  • Tauber, R., Park, C. S., & Reutter, W. (1983). Intramolecular heterogeneity of degradation in plasma membrane glycoproteins: Evidence for a general characteristic. Proceedings of the National Academy of Sciences, 80(13), 4026–4029. https://doi.org/10.1073/pnas.80.13.4026
  • Tiwari, V., Mishra, N., Gadani, K., Solanki, P. S., Shah, N. A., & Tiwari, M. (2018). Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant acinetobacter baumannii. Frontiers in Microbiology, 6, 1–10.
  • Uversky, V. N., Narizhneva, N. V., Ivanova, T. V., & Tomashevski, A. Y. (1997). Rigidity of human alpha-fetoprotein tertiary structure is under ligand control. Biochemistry, 36(44), 13638–13645. https://doi.org/10.1021/bi970332p
  • Verma, A., & Stellacci, E. (2010). Effects of surface properties on nanoparticles cell interaction. Small, 6(1), 12–21. https://doi.org/10.1002/smll.200901158
  • Vicentini, D. S., Jr Smania, A., & Laranjeira, M. C. M. (2010). Chitosan/poly (vinyl alcohol) films containing ZnO nanoparticles and plasticizers. Materials Science and Engineering: C, 30(4), 503–508. https://doi.org/10.1016/j.msec.2009.01.026
  • Wang, L., Liang, T., Ma, J., Sun, L., Yang, C., Meng, L., Liang, T., & Li, Q. (2020). Effects of nanoparticle size on the interaction between zinc oxide nanoparticles and bovine serum albumin. Journal of Biomolecular Structure & Dynamics, 38(4), 1248–1255. https://doi.org/10.1080/07391102.2019.1596838
  • Wang, X., Kong, X., Yu, Y., & Zhang, H. (2007). Synthesis and characterization of water-soluble and bifunctional ZnO − Au Nanocomposites. Journal Physical Chemistry, 111, 3836–3841.
  • Wen, M. G., Zhang, X. B., Tian, J. N., Ni, S. H., Bian, H. D., Huang, Y. L., & Liang, H. (2009). Binding interaction of xanthoxylin with bovine serum albumin. Journal of Solution Chemistry, 38(4), 391–401. https://doi.org/10.1007/s10953-009-9385-4
  • Wu, Y. L., Lim, C. S., Fu, S., Tok, A. I. Y., Lau, H. M., Boey, F. Y. C., & Zeng, X. T. (2007). Surface modifications of ZnO quantum dots for bio-imaging. Nanotechnology, 18(21), 215604. https://doi.org/10.1088/0957-4484/18/21/215604
  • Xiong, H. M., Xu, Y., Ren, Q. G., & Xia, Y. Y. (2008). Stable aqueous ZnO@polymer core-shell nanoparticles with tunable photoluminescence and their application in cell imaging. Journal of the American Chemical Society, 130(24), 7522–7523. https://doi.org/10.1021/ja800999u
  • Yewale, C., Baradia, D., Vhora, I., & Misra, A. (2013). Proteins: Emerging carrier for delivery of cancer therapeutics. Expert Opinion on Drug Delivery, 10(10), 1429–1448. https://doi.org/10.1517/17425247.2013.805200
  • Yu, X., Di, Y., Xie, C., Song, Y., He, H., Li, H., Pu, X., Lu, W., Fu, D., & Jin, C. (2015). An in vitro and in vivo study of gemcitabine-loaded albumin nanoparticles in a pancreatic cancer cell line. International Journal of Nanomedicine, 10, 6825–6834.
  • Zhou, Y., Wu, W., Hu, G., Wu, H., & Cui, S. (2008). Hydrothermal synthesis of ZnO nanorod arrays with the addition of polyethyleneimine. Materials Research Bulletin, 43(8-9), 2113–2118. https://doi.org/10.1016/j.materresbull.2007.09.024
  • Žūkienė, R., & Snitka, V. (2015). Zinc oxide nanoparticle and bovine serum albumin interaction and nanoparticles influence on cytotoxicity in vitro. Colloids and Surfaces. B, Biointerfaces, 135, 316–323. https://doi.org/10.1016/j.colsurfb.2015.07.054

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.