204
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

In silico assessment of dehalogenase from Bacillus thuringiensis H2 in relation to its salinity-stability and pollutants degradation

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 9332-9346 | Received 09 Feb 2021, Accepted 04 May 2021, Published online: 20 May 2021

References

  • Abidin, M. H. Z., Abd Halim, K. B., Huyop, F., Hamid, T. H. T. A., Wahab, R. A., & Hamid, A. A. A. (2019). The mechanistic role of active site residues in non-stereo haloacid dehalogenase E (DehE). Journal of Molecular Graphics and Modelling, 90, 219–225. https://doi.org/10.1016/j.jmgm.2019.05.003
  • Adamu, A., Shamsir, M. S., Wahab, R. A., Parvizpour, S., & Huyop, F. (2017). Multi-template homology-based structural model of L-2-haloacid dehalogenase (DehL) from Rhizobium sp. RC1. Journal of Biomolecular Structure and Dynamics, 35(15), 3285–3296. https://doi.org/10.1080/07391102.2016.1254115
  • Adcock, S. A., & McCammon, J. A. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Akcay, K., & Kaya, Y. (2019). Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds. Biotechnology & Biotechnological Equipment, 33(1), 945–953. https://doi.org/10.1080/13102818.2019.1631717
  • Anbarasu, K., & Jayanthi, S. (2018). Identification of curcumin derivatives as human LMTK3 inhibitors for breast cancer: A docking, dynamics, and MM/PBSA approach. 3 Biotech, 8(5), 228. https://doi.org/10.1007/s13205-018-1239-6
  • Anuar, N. F. S. K., Wahab, R. A., Huyop, F., Amran, S. I., Hamid, A. A. A., Halim, K. B. A., & Hood, M. H. M. (2020). Molecular docking and molecular dynamics simulations of a mutant Acinetobacter haemolyticus alkaline-stable lipase against tributyrin. Journal of Biomolecular Structure and Dynamics, 39(6), 2079–2091. https://doi.org/10.1080/07391102.2020.1743364
  • Anwar, S., Kar, R. K., Haque, M. A., Dahiya, R., Gupta, P., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Effect of pH on the structure and function of pyruvate dehydrogenase kinase 3: Combined spectroscopic and MD simulation studies. International Journal of Biological Macromolecules, 147, 768–777. https://doi.org/10.1016/j.ijbiomac.2020.01.218
  • Bahaman, A. H., Abdul Wahab, R., Hamid, A. A. A., Halim, K. B. A., Kaya, Y., & Edbeib, M. F. (2020). Substrate docking and molecular dynamic simulation for prediction of fungal enzymes from Trichoderma species-assisted extraction of nanocellulose from oil palm leaves. Journal of Biomolecular Structure & Dynamics, 38(14), 4246–4258. https://doi.org/10.1080/07391102.2019.1679667
  • Batumalaie, K., Edbeib, M. F., Mahat, N. A., Huyop, F., & Wahab, R. A. (2018). In silico and empirical approaches toward understanding the structural adaptation of the alkaline-stable lipase KV1 from Acinetobacter haemolyticus. Journal of Biomolecular Structure & Dynamics, 36(12), 3077–3093. https://doi.org/10.1080/07391102.2017.1377635
  • Ben-Laouane, R., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Boutasknit, A., Ait-Rahou, Y., Toubali, S., Mitsui, T., Oufdou, K., Wahbi, S., & Meddich, A. (2020). Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms, 8(11), 1695. https://doi.org/10.3390/microorganisms8111695
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dong, Y. W., Liao, M. L., Meng, X. L., & Somero, G. N. (2018). Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proceedings of the National Academy of Sciences, 115(6), 1274–1279. https://doi.org/10.1073/pnas.1718910115
  • Edbeib, M. F., Aksoy, H. M., Kaya, Y., Wahab, R. A., & Huyop, F. (2020). Haloadaptation: Insights from comparative modeling studies between halotolerant and non-halotolerant dehalogenases. Journal of Biomolecular Structure & Dynamics, 38(12), 3452–3461. https://doi.org/10.1080/07391102.2019.1657498
  • Edbeib, M. F., Wahab, R. A., Kaya, Y., & Huyop, F. (2017). In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: Insights into a hypersaline-adapted dehalogenase. Annals of Microbiology, 67(5), 371–382. https://doi.org/10.1007/s13213-017-1266-2
  • Ewere, E. E., Reichelt-Brushett, A., & Benkendorff, K. (2021). Impacts of Neonicotinoids on Molluscs: What We Know and What We Need to Know. Toxics, 9(2), 21. https://doi.org/10.3390/toxics9020021
  • Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology. Waveland Press.
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 3502514. https://doi.org/10.1155/2018/3502514
  • Gao, Y., Mei, Y., & Zhang, J. Z. (2015). Treatment of hydrogen bonds in protein simulations. In Jianjun Liu (Ed.), Advanced materials for renewable hydrogen production, storage and utilization (pp. 121–136). IntechOpen.
  • Giovanella, P., Vieira, G. A., Otero, I. V. R., Pellizzer, E. P., de Jesus Fontes, B., & Sette, L. D. (2020). Metal and organic pollutants bioremediation by extremophile microorganisms. Journal of Hazardous Materials, 382, 121024. https://doi.org/10.1016/j.jhazmat.2019.121024
  • Hamid, A. A. A., Hamid, T. H. T. A., Wahab, R. A., Omar, M. S. S., & Huyop, F. (2015). An S188V mutation alters substrate specificity of nonstereospecific a-Haloalkanoic acid Dehalogenase E (DehE). Plos One, 10(3), e0121687. https://doi.org/10.1371/journal.pone.0121687
  • Hamid, A. A. A., Tengku Abdul Hamid, T. H., Wahab, R. A., & Huyop, F. (2015). Identification of functional residues essential for dehalogenation by the non-stereospecific a-haloalkanoic acid dehalogenase from Rhizobium sp. RC1. Journal of Basic Microbiology, 55(3), 324–330. https://doi.org/10.1002/jobm.201300526
  • Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53(2), 384–390. https://doi.org/10.1021/ci300399w
  • Kalathiya, U., Padariya, M., & Baginski, M. (2019). Structural, functional, and stability change predictions in human telomerase upon specific point mutations. Scientific Reports, 9(1), 8707. https://doi.org/10.1038/s41598-019-45206-y
  • Kovacic, F., Mandrysch, A., Poojari, C., Strodel, B., & Jaeger, K. E. (2016). Structural features determining thermal adaptation of esterases. Protein Engineering Design and Selection, 29(2), 65–76. https://doi.org/10.1093/protein/gzv061
  • Koziara, K. B., Stroet, M., Malde, A. K., & Mark, A. E. (2014). Testing and validation of the Automated Topology Builder (ATB) version 2.0: Prediction of hydration free enthalpies. Journal of Computer-Aided Molecular Design, 28(3), 221–233. https://doi.org/10.1007/s10822-014-9713-7
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Advances in Bioinformatics, 2014, 502618. https://doi.org/10.1155/2014/502618
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Landsgesell, J., Nová, L., Rud, O., Uhlík, F., Sean, D., Hebbeker, P., Holm, C., & Košovan, P. (2019). Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter, 15(6), 1155–1185. https://doi.org/10.1039/c8sm02085j
  • Lau, D., Jian, W., Yu, Z., & Hui, D. (2018). Nano-engineering of construction materials using molecular dynamics simulations: Prospects and challenges. Composites Part B: Engineering, 143, 282–291. https://doi.org/10.1016/j.compositesb.2018.01.014
  • Le Borgne, S., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic bacteria and archaea. Journal of Molecular Microbiology and Biotechnology, 15(2-3), 74–92. https://doi.org/10.1159/000121323
  • Lemkul, J. (2018). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package. Living Journal of Computational Molecular Science, 1(1), 5068. [article v1. 0].
  • Liang, C., Xue, Y., Fioroni, M., Rodrıguez-Ropero, F., Zhou, C., Schwaneberg, U., & Ma, Y. (2011). Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Applied Microbiology and Biotechnology, 89(2), 315–326. https://doi.org/10.1007/s00253-010-2842-6
  • Liao, K. H., Chen, K. B., Lee, W. Y., Sun, M. F., Lee, C. C., & Chen, C. Y. C. (2014). Ligand-based and structure-based investigation for Alzheimer's disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–16. https://doi.org/10.1155/2014/628712
  • Lindahl, E., Hess, B., & Van Der Spoel, D. (2001). Gromacs 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 7(8), 306–317. https://doi.org/10.1007/s008940100045
  • Lobanov, M. Y., Bogatyreva, N., & Galzitskaya, O. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Madigan, M. T., Martinko, J. M., Dunlap, P. V., & Clark, D. P. (2009). Brock—Biology of microorganisms. 12th ed. Pearson Benjamin Cummings.
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An Automated force field Topology Builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Mondal, R., & Kole, R. K. (2021). Monitoring and evaluation of pesticide residues in aquatic systems. In Sustainable Agriculture Reviews. Vol. 47 (pp. 91–143). Springer.
  • Nemaysh, V., & Luthra, P. M. (2017). Computational analysis revealing that K634 and T681 mutations modulate the 3D-structure of PDGFR-b and lead to sunitinib resistance. RSC Advances, 7(60), 37612–37626. https://doi.org/10.1039/C7RA01305A
  • Oyewusi, H. A., Huyop, F., & Wahab, R. A. (2020). Molecular docking and molecular dynamics simulation of Bacillus thuringiensis dehalogenase against haloacids, haloacetates and chlorpyrifos. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1835727
  • Oyewusi, H. A., Wahab, R. A., & Huyop, F. (2020). Dehalogenase-producing halophiles and their potential role in bioremediation. Marine Pollution Bulletin, 160, 111603. https://doi.org/10.1016/j.marpolbul.2020.111603
  • Oyewusi, H. A., Wahab, R. A., Kaya, Y., Edbeib, M. F., & Huyop, F. (2020). Alternative bioremediation agents against haloacids, haloacetates and chlorpyrifos using novel halogen-degrading bacterial isolates from the hypersaline Lake Tuz. Catalysts, 10(6), 651. https://doi.org/10.3390/catal10060651
  • Remonsellez, F., Castro-Severyn, J., Pardo-Esté, C., Aguilar, P., Fortt, J., Salinas, C., Barahona, S., León, J., Fuentes, B., Areche, C., Hernández, K. L., Aguayo, D., & Saavedra, C. P. (2018). Characterization and salt response in recurrent halotolerant Exiguobacterium sp. SH31 isolated from sediments of Salar de Huasco, Chilean Altiplano. Frontiers in Microbiology, 9, 2228. https://doi.org/10.3389/fmicb.2018.02228
  • Rosdi, M. N. M., Arif, S. M., Bakar, M. H. A., Razali, S. A., Zulkifli, R. M., & Ya’akob, H. (2018). Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis, 23(1), 27–40. https://doi.org/10.1007/s10495-017-1434-7
  • Satari Faghihi, L., Seyedalipour, B., Ahmady-Asbchin, S., & Riazi, G. (2019). Moderately Halophilic Bacteria and Their Industrially Important Enzymes from the Ancient Ecosystem Badab-e Surt. Industrial Biotechnology, 15(2), 95–105. https://doi.org/10.1089/ind.2018.0031
  • Serrano, R., Portolés, T., Blanes, M. A., Hernández, F., Navarro, J. C., Varó, I., & Amat, F. (2012). Characterization of the organic contamination pattern of a hyper-saline ecosystem by rapid screening using gas chromatography coupled to high-resolution time-of-flight mass spectrometry. Science of the Total Environment, 433, 161–168. https://doi.org/10.1016/j.scitotenv.2012.06.042
  • Siglioccolo, A., Paiardini, A., Piscitelli, M., & Pascarella, S. (2011). Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Structural Biology, 11(1), 50. https://doi.org/10.1186/1472-6807-11-50
  • Singh, A., Das, M., & Grover, A. (2020). Molecular mechanism of acetoacetyl-CoA enhanced kinetics for increased bioplastic production from Cupriavidus necator 428. Journal of Biomolecular Structure & Dynamics, 38(3), 827–840. https://doi.org/10.1080/07391102.2019.1590239
  • Smith, A. J., Barber, J., Davis, S., Jones, C., Kotra, K. K., Losada, S., Lyons, B. P., Mataki, M., Potter, K. D., & Devlin, M. J. (2021). Aquatic contaminants in Solomon Islands and Vanuatu: Evidence from passive samplers and Microtox toxicity assessment. Marine Pollution Bulletin, 165, 112118. https://doi.org/10.1016/j.marpolbul.2021.112118
  • Zaccai, G., & Eisenberg, H. (1990). Halophilic proteins and the influence of solvent on protein stabilization. Trends in Biochemical Sciences, 15(9), 333–337. https://doi.org/10.1016/0968-0004(90)90068-M
  • Zhang, X., Zhang, S., Hao, F., Lai, X., Yu, H., Huang, Y., & Wang, H. (2005). Expression, purification and properties of shikimate dehydrogenase from Mycobacterium tubercolosis. Journal of Biochemistry & Molecular Biology, 38(5), 624–631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.