125
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Cytochrome P450 2C19 gene polymorphisms (CYP2C19*2 and CYP2C19*3) in chronic myeloid leukemia patients: in vitro and in silico studies

, & ORCID Icon
Pages 9389-9402 | Received 27 Jan 2021, Accepted 07 May 2021, Published online: 01 Jun 2021

References

  • Abumarzoq, L. F. (2017). Allele frequency of CYP2C19 (* 1 and* 3) gene polymorphism in Palestinian population. The Pharma Innovation, 6(3, Part B), 80.
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Beitelshees, A. L., Horenstein, R. B., Vesely, M. R., Mehra, M. R., & Shuldiner, A. R. (2011). Pharmacogenetics and clopidogrel response in patients undergoing percutaneous coronary interventions. Clinical Pharmacology and Therapeutics, 89(3), 455–459. https://doi.org/10.1038/clpt.2010.316
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Brockmöller, J. J., Rost, K. L., Gross, D., Schenkel, A., & Roots, I. (1995). Phenotyping of CYP2C19 with enantiospecific HPLC quantification of R-and S-mephenytoin and comparison with the intron4/exon5 G→A-splice site mutation. Pharmacogenetics and Genomics, 5(2), 80–88.
  • Celebi, A., Kocaman, O., Savli, H., Aygün, C., Konduk, B. T., Sentürk, O., & Hülagu, S. (2009). The prevalence of CYP2C19 mutations in Turkish patients with dyspepsia. The Turkish Journal of Gastroenterology: The Official Journal of Turkish Society of Gastroenterology, 20(3), 161–164. https://doi.org/10.4318/tjg.2009.0001
  • Chakrabarty, B., & Parekh, N. (2016). NAPS: Network analysis of protein structures. Nucleic Acids Research, 44(W1), W375–W382. https://doi.org/10.1093/nar/gkw383
  • Chang, M., Tybring, G., Dahl, M. L., & Lindh, J. D. (2014). Impact of cytochrome P450 2C19 polymorphisms on citalopram/escitalopram exposure: A systematic review and meta-analysis. Clinical Pharmacokinetics, 53(9), 801–811. https://doi.org/10.1007/s40262-014-0162-1
  • Chaudhry, A. S., Prasad, B., Shirasaka, Y., Fohner, A., Finkelstein, D., Fan, Y., Wang, S., Wu, G., Aklillu, E., Sim, S. C., Thummel, K. E., & Schuetz, E. G. (2015). The CYP2C19 intron 2 branch point SNP is the ancestral polymorphism contributing to the poor metabolizer phenotype in livers with CYP2C19* 35 and CYP2C19* 2 alleles. Drug Metabolism and Disposition, 43(8), 1226–1235. https://doi.org/10.1124/dmd.115.064428
  • Croom, E. (2012). Metabolism of xenobiotics of human environments. Progress in Molecular Biology and Translational Science, 112, 31–88. https://doi.org/10.1016/B978-0-12-415813-9.00003-9
  • Daly, A. K. (2004). Pharmacogenetics of the cytochromes P450. Current Topics in Medicinal Chemistry, 4(16), 1733–1744. https://doi.org/10.2174/1568026043387070
  • Dandara, C., Mutowembwa Masimirembwa, C., Magimba, A., Sayi, J., Kaaya, S., Sommers, D. K., Snyman, J. R., & Hasler, J. A. (2001). Genetic polymorphism of CYP2D6 and CYP2C19 in east-and southern African populations including psychiatric patients. European Journal of Clinical Pharmacology, 57(1), 11–17. https://doi.org/10.1007/s002280100282
  • De Morais, S. M., Wilkinson, G. R., Blaisdell, J., Meyer, U. A., Nakamura, K., & Goldstein, J. A. (1994). Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Molecular Pharmacology, 46(4), 594–598.
  • Dehbozorgi, M., Kamalidehghan, B., Hosseini, I., Dehghanfard, Z., Sangtarash, M. H., Firoozi, M., Ahmadipour, F., Meng, G.Y., & Houshmand, M. (2018). Prevalence of the CYP2C19* 2 (681 G > A),* 3 (636 G > A) and* 17 (-806 C > T) alleles among an Iranian population of different ethnicities. Molecular Medicine Reports, 17(3), 4195–4202.
  • Desta, Z., Zhao, X., Shin, J. G., & Flockhart, D. A. (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clinical Pharmacokinetics, 41(12), 913–958. https://doi.org/10.2165/00003088-200241120-00002
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Griskevicius, L., Yasar, U., Sandberg, M., Hidestrand, M., Eliasson, E., Tybring, G., Hassan, M., & Dahl, M.-L. (2003). Bioactivation of cyclophosphamide: The role of polymorphic CYP2C enzymes. European Journal of Clinical Pharmacology, 59(2), 103–109. https://doi.org/10.1007/s00228-003-0590-6
  • Guengerich, F. P. (1995). Human cytochrome P450 enzymes. In Cytochrome P450 (pp. 473–535). Springer.
  • Gulati, S., Yadav, A., Kumar, N., Kumar, G., Aggarwal, N., & Gupta, R. (2014). Frequency distribution of high risk alleles of CYP2C19, CYP2E1, CYP3A4 genes in Haryana population. Environmental Toxicology and Pharmacology, 37(3), 1186–1193.
  • Hamdy, S. I., Hiratsuka, M., Narahara, K., El‐Enany, M., Moursi, N., Ahmed, M. S. E., & Mizugaki, M. (2002). Allele and genotype frequencies of polymorphic cytochromes P450 (CYP2C9, CYP2C19, CYP2E1) and dihydropyrimidine dehydrogenase (DPYD) in the Egyptian population. British Journal of Clinical Pharmacology, 53(6), 596–603. https://doi.org/10.1046/j.1365-2125.2002.01604.x
  • He, N., Yan, F. X., Huang, S. L., Wang, W., Xiao, Z. S., Liu, Z. Q., & Zhou, H. H. (2002). CYP2C19 genotype and S-mephenytoin 4′-hydroxylation phenotype in a Chinese Dai population. European Journal of Clinical Pharmacology, 58(1), 15–18. https://doi.org/10.1007/s00228-002-0425-x
  • Ibeanu, G. C., Blaisdell, J., Ghanayem, B. I., Beyeler, C., Benhamou, S., Bouchardy, C., Wilkinson, G. R., Dayer, P., Daly, A. K., & Goldstein, J. A. (1998). An additional defective allele, CYP2C19* 5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmacogenetics, 8(2), 129–135.
  • Idrissi, H. H., Hmimech, W., El Khorb, N., Akoudad, H., Habbal, R., & Nadifi, S. (2018). A synergic effect between CYP2C19* 2, CYP2C19* 3 loss-of-function and CYP2C19* 17 gain-of-function alleles is associated with Clopidogrel resistance among Moroccan Acute Coronary Syndromes patients. BMC Research Notes, 11(1), 1–6.
  • Jose, R., Chandrasekaran, A., Sam, S. S., Gerard, N., Chanolean, S., Abraham, B. K., Satyanarayanamoorthy, K., Peter, A., & Rajagopal, K. (2005). CYP2C9 and CYP2C19 genetic polymorphisms: Frequencies in the south Indian population. Fundamental and Clinical Pharmacology, 19(1), 101–105. https://doi.org/10.1111/j.1472-8206.2004.00307.x
  • Jureidini, I. D., Chamseddine, N., Keleshian, S., Naoufal, R., Zahed, L., & Hakime, N. (2011). Prevalence of CYP2C19 polymorphisms in the Lebanese population. Molecular Biology Reports, 38(8), 5449–5452. https://doi.org/10.1007/s11033-011-0700-y
  • Kaplan, W., & Littlejohn, T. G. (2001). Swiss-PDB viewer (deep view). Briefings in Bioinformatics, 2(2), 195–197. https://doi.org/10.1093/bib/2.2.195
  • Kumar, R., Kumar, R., Tanwar, P., Deo, S. V. S., Mathur, S., Agarwal, U., & Hussain, S. (2020). Structural and conformational changes induced by missense variants in the zinc finger domains of GATA3 involved in breast cancer. RSC Advances, 10(65), 39640–39653. https://doi.org/10.1039/D0RA07786K
  • Kumar, R., Kumar, R., Tanwar, P., Rath, G. K., Kumar, R., Kumar, S., Dash, N., Das, P., & Hussain, S. (2021). Deciphering the impact of missense mutations on structure and dynamics of SMAD4 protein involved in pathogenesis of gall bladder cancer. Journal of Biomolecular Structure & Dynamics, 39(6), 1940–1954. https://doi.org/10.1080/07391102.2020.1740789
  • Kumar, R., & Saran, S. (2021). Comparative modelling unravels the structural features of eukaryotic TCTP implicated in its multifunctional properties: An in silico approach. Journal of Molecular Modeling, 27(2), 1–15. https://doi.org/10.1007/s00894-020-04630-y
  • Lamba, J. K., Dhiman, R. K., & Kohli, K. K. (2000). CYP2C19 genetic mutations in North Indians. Clinical Pharmacology & Therapeutics, 68(3), 328–335. https://doi.org/10.1067/mcp.2000.109365
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lee, J. S., Ward, W. O., Liu, J., Ren, H., Vallanat, B., Delker, D., & Corton, J. C. (2011). Hepatic xenobiotic metabolizing enzyme and transporter gene expression through the life stages of the mouse. PLoS One, 6(9), e24381. https://doi.org/10.1371/journal.pone.0024381
  • Li‐Wan‐Po, A., Girard, T., Farndon, P., Cooley, C., & Lithgow, J. (2010). Pharmacogenetics of CYP2C19: Functional and clinical implications of a new variant CYP2C19* 17. British Journal of Clinical Pharmacology, 69(3), 222–230. https://doi.org/10.1111/j.1365-2125.2009.03578.x
  • Maurya, R., Kumar, R., & Saran, S. (2020). AMPKα promotes basal autophagy induction in Dictyostelium discoideum. Journal of Cellular Physiology, 235(5), 4941–4953. https://doi.org/10.1002/jcp.29373
  • Miller, S. A., Dykes, D. D., & Polesky, H. F. R. N. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. https://doi.org/10.1093/nar/16.3.1215
  • Niu, X., Mao, L., Huang, Y., Baral, S., Li, J.-Y., Gao, Y., Xia, Y.-P., He, Q.-W., Wang, M.-D., Li, M., Zou, L., Miao, X.-P., & Hu, B. (2015). CYP2C19 polymorphism and clinical outcomes among patients of different races treated with clopidogrel: A systematic review and meta-analysis. Journal of Huazhong University of Science and Technology. Medical Sciences = Hua Zhong ke ji da Xue Xue Bao. Yi Xue Ying De Wen Ban = Huazhong Keji Daxue Xuebao. Yixue Yingdewen Ban, 35(2), 147–156. https://doi.org/10.1007/s11596-015-1404-7
  • Oestreich, J. H., Best, L. G., & Dobesh, P. P. (2014). Prevalence of CYP2C19 variant alleles and pharmacodynamic variability of aspirin and clopidogrel in Native Americans. American Heart Journal, 167(3), 413–418. https://doi.org/10.1016/j.ahj.2013.10.028
  • Padmanabhan, S. (2014). Handbook of pharmacogenomics and stratified medicine. Academic Press.
  • Parsa, N. (2012). Environmental factors inducing human cancers. Iranian Journal of Public Health, 41(11), 1–9.
  • Pelkonen, O., Turpeinen, M., Hakkola, J., Honkakoski, P., Hukkanen, J., & Raunio, H. (2008). Inhibition and induction of human cytochrome P450 enzymes: Current status. Archives of Toxicology, 82(10), 667–715. https://doi.org/10.1007/s00204-008-0332-8
  • Persson, I., Aklillu, E., Rodrigues, F., Bertilsson, L., & Ingelman-Sundberg, M. (1996). S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics, 6(6), 521–526. https://doi.org/10.1097/00008571-199612000-00005
  • Reynald, R. L., Sansen, S., Stout, C. D., & Johnson, E. F. (2012). Structural characterization of human cytochrome P450 2C19 active site differences between P450s 2C8, 2C9, and 2C19. Journal of Biological Chemistry, 287(53), 44581–44591. https://doi.org/10.1074/jbc.M112.424895
  • Roh, H. K., Dahl, M. L., Tybring, G., Yamada, H., Cha, Y. N., & Bertilsson, L. (1996). CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics, 6(6), 547–551.
  • Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., Prlic, A., Quesada, M., Quinn, G. B., Westbrook, J. D., Young, J., Yukich, B., Zardecki, C., Berman, H. M., & Bourne, P. E. (2011). The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Research, 39(Database issue), D392–D401. https://doi.org/10.1093/nar/gkq1021
  • Sahib, H. A., Mohammed, B. I., & Abdul-Majid, B. A. (2015). Genetic polymorphism of CYP2C19 in asample of Iraqi population. International Journal of Pharmacy and Biological Sciences, 5(4), 54–60.
  • Scordo, M. G., Caputi, A. P., D’Arrigo, C., Fava, G., & Spina, E. (2004). Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacological Research, 50(2), 195–200. https://doi.org/10.1016/j.phrs.2004.01.004
  • Serrano, D., Torrado, S., Torrado-Santiago, S., & Gisbert, J. P. (2012). The influence of CYP2C19 genetic polymorphism on the pharmacokinetics/-pharmacodynamics of proton pump inhibitor-containing Helicobacter pylori treatments. Current Drug Metabolism, 13(9), 1303–1312. https://doi.org/10.2174/138920012803341393
  • Shirasaka, Y., Chaudhry, A. S., McDonald, M., Prasad, B., Wong, T., Calamia, J. C., Fohner, A., Thornton, T. A., Isoherranen, N., Unadkat, J. D., Rettie, A. E., Schuetz, E. G., & Thummel, K. E. (2016). Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content. The Pharmacogenomics Journal, 16(4), 375–387. https://doi.org/10.1038/tpj.2015.58
  • Timm, R., Kaiser, R., Lötsch, J., Heider, U., Sezer, O., Weisz, K., Montemurro, M., Roots, I., & Cascorbi, I. (2005). Association of cyclophosphamide pharmacokinetics to polymorphic cytochrome P450 2C19. The Pharmacogenomics Journal, 5(6), 365–373. https://doi.org/10.1038/sj.tpj.6500330
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, M. L., Bhargava, P., Cherrouk, I., Marshall, J. L., Flockhart, D. A., & Wainer, I. W. (2000). A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. British Journal of Clinical Pharmacology, 49(5), 485–488. https://doi.org/10.1046/j.1365-2125.2000.00189.x
  • Xie, Y. C., Eriksson, L. A., & Zhang, R. B. (2020). Molecular dynamics study of the recognition of ATP by nucleic acid aptamers. Nucleic Acids Research, 48(12), 6471–6480. https://doi.org/10.1093/nar/gkaa428
  • Yadav, S. S., Ruwali, M., Pant, M. C., Shukla, P., Singh, R. L., & Parmar, D. (2010). Interaction of drug metabolizing cytochrome P450 2D6 poor metabolizers with cytochrome P450 2C9 and 2C19 genotypes modify the susceptibility to head and neck cancer and treatment response. Mutation Research, 684(1-2), 49–55. https://doi.org/10.1016/j.mrfmmm.2009.11.010
  • Yamada, H., Dahl, M. L., Lannfelt, L., Viitanen, M., Winblad, B., & Sjöqvist, F. (1998). CYP2D6 and CYP2C19 genotypes in an elderly Swedish population. European Journal of Clinical Pharmacology, 54(6), 479–481. https://doi.org/10.1007/s002280050497
  • Yamada, S., Onda, M., Kato, S., Matsuda, N., Matsuhisa, T., Yamada, N., Miki, M., & Matsukura, N. (2001). Genetic differences in CYP2C19 single nucleotide polymorphisms among four Asian populations. Journal of Gastroenterology, 36(10), 669–672. https://doi.org/10.1007/s005350170029
  • Zalloum, I., Hakooz, N., & Arafat, T. (2012). Genetic polymorphism of CYP2C19 in a Jordanian population: Influence of allele frequencies of CYP2C19* 1 and CYP2C19* 2 on the pharmacokinetic profile of lansoprazole. Molecular Biology Reports, 39(4), 4195–4200. https://doi.org/10.1007/s11033-011-1204-5
  • Zand, N., Tajik, N., Hourmand, M., Salek, M. A. R., & Milanian, I. (2005). Allele frequency of CYP2C19 gene polymorphisms in a healthy Iranian population. Iranian Journal of Pharmacology and Therapeutics, 4(2), 124–128.
  • Zhong, Z., Hou, J., Li, B., Zhang, Q., Liu, S., Li, C., Liu, Z., Yang, M., Zhong, W., & Zhao, P. (2017). Analysis of CYP2C19 genetic polymorphism in a large ethnic Hakka population in southern China. Medical Science Monitor, 23, 6186–6192. https://doi.org/10.12659/MSM.905337

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.