153
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mutations in passive residues modulate 3D-structure of NDM (New Delhi metallo-β-lactamase) protein that endue in drug resistance: a MD simulation approach

ORCID Icon
Pages 9492-9508 | Received 08 Jan 2020, Accepted 10 May 2021, Published online: 26 May 2021

References

  • Ali, A., Kumar, R., Iquebal, M. A., Jaiswal, S., Kumar, D., & Khan, A. U. (2019). The role of conserved residues in the catalytic activity of NDM-1: An approach involving site directed mutagenesis and molecular dynamics. Physical Chemistry Chemical Physics, 21(32), 17821–17835. https://doi.org/10.1039/C9CP02734C
  • Benkert, P., Tosatto, S. C., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins: Structure, Function, and Bioinformatics, 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Bush, K. (2010). Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Current Opinion in Microbiology, 13(5), 558–564. https://doi.org/10.1016/j.mib.2010.09.006
  • Chahine, E. B., Ferrill, M. J., & Poulakos, M. N. (2010). Doripenem: A new carbapenem antibiotic. American Journal of Health-System Pharmacy, 67(23), 2015–2024. https://doi.org/10.2146/ajhp090672
  • de Sousa, J. M., Balbontin, R., Durao, P., & Gordo, I. (2017). Multidrug-resistant bacteria compensate for the epistasis between resistances. PLOS Biology, 15(4), e2001741. https://doi.org/10.1371/journal.pbio.2001741
  • Drawz, S. M., & Bonomo, R. A. (2010). Three decades of β-lactamase inhibitors. Clinical Microbiology Reviews, 23(1), 160–201. https://doi.org/10.1128/CMR.00037-09
  • Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews, 61(3), 377–392.
  • Gao, M., Zhou, H., & Skolnick, J. (2015). Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure, 23(7), 1362–1369. https://doi.org/10.1016/j.str.2015.03.028
  • Grosdidier, A., Zoete, V., & Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Research, 39(suppl), W270–W277. https://doi.org/10.1093/nar/gkr366
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Ilić, T., Gračan, S., Arapović, A., Čapkun, V., Šubat-Dežulović, M., & Saraga, M. (2011). Changes in bacterial resistance patterns in children with urinary tract infections on antimicrobial prophylaxis at University Hospital in Split. Medical Science Monitor, 17(7), CR355–CR361. https://doi.org/10.12659/MSM.881845
  • Jackson, A. C., Pinter, T., Talley, D. C., Baker‐Agha, A., Patel, D., Smith, P. J., & Franz, K. J. (2021). Benzimidazole and benzoxazole zinc chelators as inhibitors of metallo‐β‐lactamase NDM‐1. ChemMedChem, 16(4), 654–661.
  • Kabsch, W., & Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers, 22(12), 2577–2637. https://doi.org/10.1002/bip.360221211
  • Kasturi, S., Kihara, A., FitzGerald, D., & Pastan, I. (1992). Alanine scanning mutagenesis identifies surface amino acids on domain II of Pseudomonas exotoxin required for cytotoxicity, proper folding, and secretion into periplasm. Journal of Biological Chemistry, 267(32), 23427–23433. https://doi.org/10.1016/S0021-9258(18)50108-3
  • Khan, A. U., & Rehman, M. T. (2016). Role of non-active-site residue Trp-93 in the function and stability of New Delhi metallo-β-lactamase 1. Antimicrobial Agents and Chemotherapy, 60(1), 356–360. https://doi.org/10.1128/AAC.01194-15
  • King, D. T., Worrall, L. J., Gruninger, R., & Strynadka, N. C. (2012). New Delhi metallo-β-lactamase: Structural insights into β-lactam recognition and inhibition. Journal of the American Chemical Society, 134(28), 11362–11365. https://doi.org/10.1021/ja303579d
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa- A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumar, R., Maurya, R., & Saran, S. (2017). Identification of novel inhibitors of the translationally controlled tumor protein (TCTP): Insights from molecular dynamics. Molecular BioSystems, 13(3), 510–524. https://doi.org/10.1039/C6MB00850J
  • Kumar, R., Maurya, R., & Saran, S. (2019). Introducing a simple model system for binding studies of known and novel inhibitors of AMPK: A therapeutic target for prostate cancer. Journal of Biomolecular Structure & Dynamics, 37(3), 781–795.
  • Kumar, R., & Saran, S. (2018). Structure, molecular dynamics simulation, and docking studies of Dictyostelium discoideum and human STRAPs. Journal of Cellular Biochemistry, 119(9), 7177–7191. https://doi.org/10.1002/jcb.26840
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lauretti, L., Riccio, M. L., Mazzariol, A., Cornaglia, G., Amicosante, G., Fontana, R., & Rossolini, G. M. (1999). Cloning and characterization of bla VIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrobial Agents and Chemotherapy, 43(7), 1584–1590. https://doi.org/10.1128/AAC.43.7.1584
  • Lemkul, J. A., Allen, W. J., & Bevan, D. R. (2010). Practical considerations for building GROMOS-compatible small-molecule topologies. Journal of Chemical Information and Modeling, 50(12), 2221–2235. https://doi.org/10.1021/ci100335w
  • Liang, Z., Li, L., Wang, Y., Chen, L., Kong, X., Hong, Y., Lan, L., Zheng, M., Guang-Yang, C., Liu, H., Shen, X., Luo, C., Li, K. K., Chen, K., & Jiang, H. (2011). Molecular basis of NDM-1, a new antibiotic resistance determinant. PLoS One, 6(8), e23606. https://doi.org/10.1371/journal.pone.0023606
  • Lindorff-Larsen, K., Piana, S., Dror, R. O., & Shaw, D. E. (2011). How fast-folding proteins fold. Science, 334(6055), 517–520. https://doi.org/10.1126/science.1208351
  • Lionta, E., Spyrou, G., K., Vassilatis, D., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
  • Luthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Ma, G., Wang, S., Wu, K., Zhang, W., Ahmad, A., Hao, Q., Lei, X., & Zhang, H. (2021). Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors. Bioorganic & Medicinal Chemistry, 29, 115902. https://doi.org/10.1016/j.bmc.2020.115902
  • Maiti, R., Van Domselaar, G. H., Zhang, H., & Wishart, D. S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Research, 32(Web Server), W590–W594. https://doi.org/10.1093/nar/gkh477
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257(5073), 1064–1073. https://doi.org/10.1126/science.257.5073.1064
  • Norgan, A. P., Coffman, P. K., Kocher, J. P. A., Katzmann, D. J., & Sosa, C. P. (2011). Multilevel parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(1), 12. https://doi.org/10.1186/1758-2946-3-12
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Okuma, K., Iwakawa, K., Turnidge, J. D., Grubb, W. B., Bell, J. M., O'Brien, F. G., Coombs, G. W., Pearman, J. W., Tenover, F. C., Kapi, M., Tiensasitorn, C., Ito, T., & Hiramatsu, K. (2002). Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. Journal of Clinical Microbiology, 40(11), 4289–4294. https://doi.org/10.1128/JCM.40.11.4289-4294.2002
  • Ooi, N., Lee, V. E., Chalam-Judge, N., Newman, R., Wilkinson, A. J., Cooper, I. R., Orr, D., Lee, S., & Savage, V. J. (2021). Restoring carbapenem efficacy: A novel carbapenem companion targeting metallo-β-lactamases in carbapenem-resistant Enterobacterales. Journal of Antimicrobial Chemotherapy, 76(2), 460–466. https://doi.org/10.1093/jac/dkaa455
  • Piana, S., Lindorff-Larsen, K., & Shaw, D. E. (2013). Atomic-level description of ubiquitin folding. Proceedings of the National Academy of Sciences USA, 110(15), 5915–5920. https://doi.org/10.1073/pnas.1218321110
  • Raval, A., Piana, S., Eastwood, M. P., Dror, R. O., & Shaw, D. E. (2012). Refinement of protein structure homology models via long, all‐atom molecular dynamics simulations. Proteins: Structure, Function, and Bioinformatics, 80(8), 2071–2079. https://doi.org/10.1002/prot.24098
  • Rehman, M. T., AlAjmi, M. F., Hussain, A., Rather, G. M., & Khan, M. A. (2019). High-throughput virtual screening, molecular dynamics simulation, and enzyme kinetics identified ZINC84525623 as a potential inhibitor of NDM-1. International Journal of Molecular Sciences, 20(4), 819. https://doi.org/10.3390/ijms20040819
  • Richardson, L. A. (2017). Understanding and overcoming antibiotic resistance. PLOS Biology, 15(8), e2003775. https://doi.org/10.1371/journal.pbio.2003775
  • Rose, P. W., Beran, B., Bi, C., Bluhm, W. F., Dimitropoulos, D., Goodsell, D. S., Prlic, A., Quesada, M., Quinn, G. B., Westbrook, J. D., Young, J., Yukich, B., Zardecki, C., Berman, H. M., & Bourne, P. E. (2011). The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Research, 39(Database), D392–D401. https://doi.org/10.1093/nar/gkq1021
  • Santos-Martins, D., Forli, S., Ramos, M. J., & Olson, A. J. (2014). AutoDock4Zn: An improved AutoDock force field for small-molecule docking to zinc metalloproteins. Journal of Chemical Information and Modeling, 54(8), 2371–2379. https://doi.org/10.1021/ci500209e
  • Schames, J. R., Henchman, R. H., Siegel, J. S., Sotriffer, C. A., Ni, H., & McCammon, J. A. (2004). Discovery of a novel binding trench in HIV integrase. Journal of Medicinal Chemistry, 47(8), 1879–1881. https://doi.org/10.1021/jm0341913
  • Schuttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Singer, A. C., Shaw, H., Rhodes, V., & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in Microbiology, 7, 1728. https://doi.org/10.3389/fmicb.2016.01728
  • Sousa, S. F., Fernandes, P. A., & Ramos, M. J. (2006). Protein–ligand docking: Current status and future challenges. Proteins: Structure, Function, and Bioinformatics, 65(1), 15–26. https://doi.org/10.1002/prot.21082
  • Teague, S. J. (2003). Implications of protein flexibility for drug discovery. Nature Reviews Drug Discovery, 2(7), 527–541. https://doi.org/10.1038/nrd1129
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, Design and Selection, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wang, Z., Fast, W., Valentine, A. M., & Benkovic, S. J. (1999). Metallo-β-lactamase: Structure and mechanism. Current Opinion in Chemical Biology, 3(5), 614–622. https://doi.org/10.1016/S1367-5931(99)00017-4
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Xu, D., & Zhang, Y. (2011). Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophysical Journal, 101(10), 2525–2534. https://doi.org/10.1016/j.bpj.2011.10.024
  • Yang, Y., Guo, Y., Zhou, Y., Gao, Y., Wang, X., Wang, J., & Niu, X. (2020). Discovery of a novel natural allosteric inhibitor that targets NDM-1 against Escherichia coli. Frontiers in Pharmacology, 11, 1531.
  • Yong, D., Toleman, M. A., Giske, C. G., Cho, H. S., Sundman, K., Lee, K., & Walsh, T. R. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrobial Agents and Chemotherapy, 53(12), 5046–5054. https://doi.org/10.1128/AAC.00774-09
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. https://doi.org/10.1186/1471-2105-9-40
  • Zhang, H., & Hao, Q. (2011). Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. The FASEB Journal, 25(8), 2574–2582. https://doi.org/10.1096/fj.11-184036

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.