205
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Insights into β-amyloid transition prevention by cucurbit[7]uril from molecular modeling

, &
Pages 9602-9612 | Received 11 Feb 2021, Accepted 14 May 2021, Published online: 27 May 2021

References

  • Ahmed, A., Davis, J., Aucoin, D., Sato, T., Ahuja, S., Aimoto, S., Elliott, J. I., Van Nostrand, W. E., & Smith, S. O. (2010). Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nature Structural & Molecular Biology, 17(5), 561–567. https://doi.org/10.1038/nsmb.1799
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98, 10037–10041.
  • Bardelang, D., Banaszak, K., Karoui, H., Rockenbauer, A., Waite, M., Udachin, K., Ripmeester, J. A., Ratcliffe, C. I., Ouari, O., & Tordo, P. (2009). Probing cucurbituril assemblies in water with TEMPO–like nitroxides: A trinitroxide supraradical with spin–spin interactions. Journal of the American Chemical Society, 131(15), 5402–5404. https://doi.org/10.1021/ja900306m
  • Bartolini, M., & Andrisano, V. (2010). Strategies for the inhibition of protein aggregation in human diseases. ChemBioChem, 11(8), 1018–1035. https://doi.org/10.1002/cbic.200900666
  • Berendsen, H. J. C. (2007). Simulating the physical world: hierarchical modeling from quantum mechanics to fluid dynamics. Cambridge University Press.
  • Berendsen, H. J. C., Postama, J. P. M., & Van Gunsteren, W. F. (1981). Intermolecular forces (B. Pullman (Ed.)). Reidel.
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message–passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bernstein, S. L., Dupuis, N. F., Lazo, N. D., Wyttenbach, T., Condron, M. M., Bitan, G., Teplow, D. B., Shea, J. E., Ruotolo, B. T., Robinson, C. V., & Bowers, M. T. (2009). Amyloid–β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nature Chemistry, 1(4), 326–331. https://doi.org/10.1038/nchem.247
  • Bush, M. E., Bouley, N. D., & Urbach, A. R. (2005). Charge–mediated recognition of N–terminal tryptophan in aqueous solution by a synthetic host. Journal of the American Chemical Society, 127(41), 14511–14517. https://doi.org/10.1021/ja0548440
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chinai, J. M., Taylor, A. B., Ryno, L. M., Hargreaves, N. D., Morris, C. A., Hart, P. J., & Urbach, A. R. (2011). Molecular recognition of insulin by a synthetic receptor. Journal of the American Chemical Society, 133(23), 8810–8813. https://doi.org/10.1021/ja201581x
  • Chiti, F., & Dobson, C. M. (2009). Amyloid formation by globular proteins under native conditions. Nature Chemical Biology, 5(1), 15–22. https://doi.org/10.1038/nchembio.131
  • Cohen, S. I. A., Arosio, P., Presto, J., Kurudenkandy, F. R., Biverstål, H., Dolfe, L., Dunning, C., Yang, X., Frohm, B., Vendruscolo, M., Johansson, J., Dobson, C. M., Fisahn, A., Knowles, T. P. J., & Linse, S. (2015). A molecular chaperone breaks the catalytic cycle that generates toxic Aβ olifomers. Nature Structural & Molecular Biology, 22(3), 207–213. https://doi.org/10.1038/nsmb.2971
  • Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D’Ursi, A. M., Temussi, P. A., & Picone, D. (2002). Solution structure of the Alzheimer amyloid β–peptide (1–42) in an apolar microenvironment. Similarity with a virus fusion domain. European Journal of Biochemistry, 269(22), 5642–5648. https://doi.org/10.1046/j.1432-1033.2002.03271.x
  • de Almeida, N. E. C., Do, T. D., Tro, M., LaPointe, N. E., Feinstein, S. C., Shea, J.-E., & Bowers, M. T. (2016). Opposing effects of cucurbit[7]uril and 1,2,3,4,6–penta–O–galloyl–β–D–glucopyranose on amyloid β25–35 assembly. ACS Chemical Neuroscience, 7(2), 218–226. https://doi.org/10.1021/acschemneuro.5b00280
  • de Oliveira, O. V., & Viegas, R. G. (2020). Cucurbit[7]uril as a possible nanocarrier for the antichagasic benznidazole: A computational approach. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98(1-2), 93–103. https://doi.org/10.1007/s10847-020-01014-w
  • Deserno, M., & Holm, C. (1998). How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. The Journal of Chemical Physics, 109(18), 7678–7693. https://doi.org/10.1063/1.477414
  • Eisenberg, D., & Jucker, M. (2012). The amyloid state of proteins in human diseases. Cell, 148(6), 1188–1203. https://doi.org/10.1016/j.cell.2012.02.022
  • Estrada, L. D., & Soto, C. (2007). Disrupting β–amyloid aggregation for Alzheimer disease treatment. Current Topics in Medicinal Chemistry, 7(1), 115–126. https://doi.org/10.2174/156802607779318262
  • Feng, B. Y., Toyama, B. H., Wille, H., Colby, D. W., Collins, S. R., May, B. C. H., Prusiner, S. B., Weissman, J., & Shoichet, B. K. (2008). Small–molecule aggregates inhibit amyloid polymerization. Nature Chemical Biology, 4(3), 197–199. https://doi.org/10.1038/nchembio.65
  • Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid β–peptide. Nature Reviews Molecular Cell Biology, 8(2), 101–112. https://doi.org/10.1038/nrm2101
  • Hardy, J., & Selkoe, D. J. (2002). The Amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297(5580), 353–356. https://doi.org/10.1126/science.1072994
  • Hashimoto, M., Shahdat, H. M., Yamashita, S., Katakura, M., Tanabe, Y., Fujiwara, H., Gamoh, S., Miyazawa, T., Arai, H., Shimada, T., & Shido, O. (2008). Docosahexaenoic acid disrupts in vitro amyloid β1–40 fibrillation and concomitantly inhibits amyloid levels in cerebral cortex of Alzheimer’s disease model rats. Journal of Neurochemistry, 107(6), 1634–1646. https://doi.org/10.1111/j.1471-4159.2008.05731.x
  • Hess, B. (2008). P–LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load–balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hettiarachchi, G., Nguyen, D., Wu, J., Lucas, D., Ma, D., Isaacs, L., & Briken, V. (2010). Toxicology and drug delivery by cucurbit[n]uril type molecular containers. PLoS One, 5(5), e10514. https://doi.org/10.1371/journal.pone.0010514
  • Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science, 268(5214), 1144–1149. https://doi.org/10.1126/science.7761829
  • Iwata, K., Fujiwara, T., Matsuki, Y., Akutsu, H., Takahashi, S., Naiki, H., & Goto, Y. (2006). 3D structure of amyloid protofilaments of β2–microglubulin fragmente probed by solid–state NMR. Proceedings of the National Academy of Sciences of the United States of America, 103, 18119–18124. https://doi.org/10.1073/pnas.0607180103
  • Jakob-Roetne, R., & Jacobsen, H. (2009). Alzheimer’s disease: From pathology to therapeutic approaches. Angewandte Chemie International Edition, 48, 3030–3059.
  • Jorgensen, W. L., Maxwell, D. S., & Tirado–Rives, J. (1996). Development and testing of the OPLS all–atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Karran, E., Mercken, M., & De Strooper, B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nature Reviews Drug Discovery, 10(9), 698–712. https://doi.org/10.1038/nrd3505
  • Keshet, B., Yang, I. H., & Good, T. A. (2010). Can size alone explain some of the diferences in toxicity between beta–amyloid oligomers and fibrils? Biotechnology and Bioengineering, 106, 333–337.
  • Kim, J., Jung, I. S., Kim, S. Y., Lee, E., Kang, J. K., Sakamoto, S., Yamaguchi, K., & Kim, K. (2000). New cucurbituril homologues: Syntheses, isolation, characterization, and X–ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). Journal of the American Chemical Society, 122(3), 540–541. https://doi.org/10.1021/ja993376p
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., & Cheatham, T. E., 3rd. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33, 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., & Kumar, R. (2014). g_mmpbsa – A GROMACS tool for high–throughput MM–PBSA calculations. Journal of Chemical Information and Modeling, 54, 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuperstein, I., Broersen, K., Benilova, I., Rozenski, J., Jonckheere, W., Debulpaep, M., Vandersteen, A., Segers-Nolten, I., Van Der Werf, K., Subramaniam, V., Braeken, D., Callewaert, G., Bartic, C., D'Hooge, R., Martins, I. C., Rousseau, F., Schymkowitz, J., & De Strooper, B. (2010). Neurotoxicity of Alzheimer’s disease Aβ peptides is induced by small changes in the Aβ42 to Aβ40 ratio. The EMBO Journal, 29(19), 3408–3420. https://doi.org/10.1038/emboj.2010.211
  • Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., & Kim, K. (2000). New cucurbituril homologues: Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). The Journal of American Chemical Society, 122, 540–541.
  • Lee, H. H., Choi, T. S., Lee, S. J. C., Lee, J. W., Park, J., Ko, Y. H., Kim, W. J., Kim, K., & Kim, H. I. (2014). Supramolecular inhibition of amyloid fibrillation by cucurbit[7]uril. Angewandte Chemie International Edition, 53(29), 7461–7465. https://doi.org/10.1002/anie.201402496
  • Lee, J. W., Lee, H. H. L., Ko, Y. H., Kim, K., & Kim, H. I. (2015). Deciphering the specific high–affinity binding of cucurbit[7]uril to amino acids in water. The Journal of Physical Chemistry B, 119(13), 4628–4636. https://doi.org/10.1021/acs.jpcb.5b00743
  • Lee, J. W., Samal, S., Selvapalam, N., Kim, H. J., & Kim, K. (2003). Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Accounts of Chemical Research, 36(8), 621–630. https://doi.org/10.1021/ar020254k
  • Liu, F., Ma, Z., Sang, J., & Lu, F. (2020). Edaravone inhibits the conformational transition of amyloid–β42: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(8), 2377–2388. https://doi.org/10.1080/07391102.2019.1632225
  • Liu, T. Y., & Bitan, G. (2012). Modulating self–assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: Strategies and mechanisms. ChemMedChem, 7, 359–374. https://doi.org/10.1002/cmdc.201100585
  • Márquez, C., Hudgins, R. R., & Nau, W. M. (2004). Mechanism of host–guest complexation by cucurbituril. Journal of the American Chemical Society, 126, 5806–5816. https://doi.org/10.1021/ja0319846
  • Mason, J. M., Kokkoni, N., Stott, K., & Doig, A. J. (2003). Design strategies for anti–amyloid agents. Current Opinion in Structural Biology, 13(4), 526–532. https://doi.org/10.1016/S0959-440X(03)00100-3
  • Masson, E., Ling, X. X., Joseph, R., Kyeremeh-Mensah, L., & Lu, X. Y. (2012). Cucurbituril chemistry: A tale of supramolecular success. RSC Advances, 2, 1213–1247.
  • Matsuzaki, K. (2014). How do membranes initiate Alzheimer’s disease? Formation of toxic amyloid fibrils by the amyloid β–protein on ganglioside clusters. Accounts of Chemical Research, 47, 2397–2404. https://doi.org/10.1021/ar500127z
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and empirical binding free energy. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 16, 2785–2791.
  • Morse, P. M., & Feshbach, H. (1953). Asymptotic series, method of steepest descent. In Methods Theoretical Physics Part I (pp. 434–443). McGraw-Hill.
  • Nasica-Labouze, J., Nguyen, P. H., Sterpone, F., Berthoumieu, O., Buchete, N.-V., Coté, S., De Simone, A., Doig, A. J., Faller, P., Garcia, A., Laio, A., Li, M. S., Melchionna, S., Mousseau, N., Mu, Y., Paravastu, A., Pasquali, S., Rosenman, D. J., Strodel, B., … Derreumaux, P. (2015). Amyloid β proteins and Alzheimer’s disease: When computer simulations complement experimental studies. Chemical Reviews, 115(9), 3518–3563. https://doi.org/10.1021/cr500638n
  • Noguchi, A., Matsumura, S., Dezawa, M., Tada, M., Yanazawa, M., Ito, A., Akioka, M., Kikuchi, S., Sato, M., Ideno, S., Noda, M., Fukunari, A., Muramatsu, S. I., Itokazu, Y., Sato, K., Takahashi, H., Teplow, D. B., Nabeshima, Y. I., Kakita, A., Imahori, K., & Hoshi, M. (2009). Isolation and characterization of patient–derived, toxic, high mass amyloid β–protein (Aβ) assembly from Alzheimer disease brains. Journal of Biological Chemistry, 284(47), 32895–32905. https://doi.org/10.1074/jbc.M109.000208
  • O’Brien, E. P., Okamoto, Y., Straub, J. E., Brooks, B. R., & Thirumalai, D. (2009). Thermodynamic perspective on the dock–lock growth mechanism of amyloid fibrils. The Journal of Physical Chemistry B, 113(43), 14421–14430. https://doi.org/10.1021/jp9050098
  • Ono, K., Condron, M. M., & Teplow, D. B. (2009). Structure neurotoxicity relationships of amyloid β–protein oligomers. Proceedings of the National Academy of Sciences, 106(35), 14745–14750. https://doi.org/10.1073/pnas.0905127106
  • Rauk, A. (2009). The chemistry of Alzheimer’s disease. Chemical Society Reviews, 38, 2698–2715. https://doi.org/10.1039/b807980n
  • Saini, R. K., Shuaib, S., Goyal, D., & Goyal, B. (2019). Insights into the inhibitory mechanism of a resveratrol and clioquinol hybrid against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 37(12), 3183–3197. https://doi.org/10.1080/07391102.2018.1511475
  • Sankaran, S., Kiren, M. C., & Jonkheijm, P. (2015). Incorporating bacteria as a living componente in supramolecular self–assembled manolayers through dynamic nanoscale interactions. ACS Nano., 9(4), 3579–3586. https://doi.org/10.1021/acsnano.5b00694
  • Shoji, M., Golde, T., Ghiso, J., Cheung, T., Estus, S., Shaffer, L., Cai, X., McKay, D., Tintner, R., Frangione, B., & Et, a. (1992). Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science, 258(5079), 126–129. https://doi.org/10.1126/science.1439760
  • Shuaib, S., & Goyal, B. (2018). Scrutiny of the mechanism of small molecule inhibitor preventing conformational transition of amyloid–β42 monomer: Insights from molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 36(3), 663–678. https://doi.org/10.1080/07391102.2017.1291363
  • Shuaib, S., Saini, R. K., Goyal, D., & Goyal, B. (2017). Insights into the inhibitory mechanism of dicyanovinyl–substituted J147 derivative against Aβ42 aggregation and protofibril destabilization: A molecular dynamics simulation study. ChemistrySelect, 2(4), 1645–1657. https://doi.org/10.1002/slct.201601970
  • Smith, A. A. A., Maikawa, C. L., Roth, G. H., & Appel, E. A. (2020). Site–selective modification of proteins using cucurbit[7]uril as supramolecular protection for N–terminal aromatic amino acids. Organic & Biomolecular Chemistry, 18(23), 4371–4375. https://doi.org/10.1039/D0OB01004A
  • Solis, F. J., & Wets, J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19
  • Sonzini, S., Stanyon, H. F., & Scherman, O. A. (2017). Decreasing amyloid toxicity through an increased rate of aggregation. Physical Chemistry Chemical Physics, 19(2), 1458–1465. https://doi.org/10.1039/C6CP06765D
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate – DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844+
  • Sun, Y., Xi, W., & Wei, G. (2015). Atomic-level study of the effects of O4 molecules on the structural properties of protofibrillar Aβ trimer: β-sheet stabilization, salt bridge protection, and binding mechanism. The Journal of Physical Chemistry B, 119(7), 2786–2794. https://doi.org/10.1021/jp508122t
  • Tanzi, R. E., & Bertram, L. (2005). Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective. Cell, 120(4), 545–555. https://doi.org/10.1016/j.cell.2005.02.008
  • Tarus, B., Straub, J. E., & Thirumalai, D. (2006). Dynamics of Asp23 − Lys28 salt-bridge formation in Aβ10-35 monomers. Journal of the American Chemical Society, 128(50), 16159–16168. https://doi.org/10.1021/ja064872y
  • Teplow, D. B., Lazo, N. D., Bitan, G., Bernstein, S., Wyttenbach, T., Bowers, M. T., Baumketner, A., Shea, J.-E., Urbanc, B., Cruz, L., Borreguero, J., & Stanley, H. E. (2006). Elucidating amyloid β–protein folding and assembly: A multidisciplinary approach. Accounts of Chemical Research, 39(9), 635–645. https://doi.org/10.1021/ar050063s
  • Uzunova, V. D., Cullinan, C., Brix, K., Nau, W. M., & Day, A. I. (2010). Toxicity of cucurbit[7]uril and cucurbit[8]uril: An exploratory in vitro and in vivo study. Organic & Biomolecular Chemistry, 8(9), 2037–2042. https://doi.org/10.1039/b925555a
  • Vivekanandan, S., Brender, J. R., Lee, S. Y., & Ramamoorthy, A. (2011). A partially folded structure of amyloid–beta(1–40) in an aqueous environment. Biochemical and Biophysical Research Communications, 411(2), 312–316. https://doi.org/10.1016/j.bbrc.2011.06.133
  • Wang, L., Zeng, R., Pang, X., Gu, Q., & Tan, W. (2015). The mechanisms of flavonoids inhibiting conformational transition of amyloid–β42 monomer: A comparative molecular dynamics simulation study. RSC Advances, 5(81), 66391–66402. https://doi.org/10.1039/C5RA12328C

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.