196
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative structure-activity relationship and machine learning studies of 2-thiazolylhydrazone derivatives with anti-Cryptococcus neoformans activity

, , , , &
Pages 9789-9800 | Received 01 Apr 2021, Accepted 23 May 2021, Published online: 14 Jun 2021

References

  • Abassi, M., Boulware, D. R., & Rhein, J. (2015). Cryptococcal Meningitis: Diagnosis and management update. Current Tropical Medicine Reports, 2(2), 90–99. https://doi.org/10.1007/s40475-015-0046-y
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Andrada, M. F., Vega-Hissi, E. G., Estrada, M. R., & Garro Martinez, J. C. (2017). Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR Models. SAR and Qsar in Environmental Research., 28(12), 1011–1023. https://doi.org/10.1080/1062936X.2017.1397056
  • Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., & Wiswedel, B. (2008). KNIME: The Konstanz information miner. In C. Preisach, H. Burkhardt, L. Schmidt-Thieme, R. Decker (Eds.), Data analysis, machine learning and applications. Studies in classification, data analysis, and knowledge organization (pp 319–326). Springer.
  • Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., Rinaldo, D., Halls, M. D., Zhang, J., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142. https://doi.org/10.1002/qua.24481
  • Bratton, E. W., El Husseini, N., Chastain, C. A., Lee, M. S., Poole, C., Stürmer, T., Juliano, J. J., Weber, D. J., & Perfect, J. R. (2012). Comparison and temporal trends of three groups with Cryptococcosis: HIV-infected, solid organ transplant, and HIV-negative/non-transplant. PLoS One, 7(8), e43582. https://doi.org/10.1371/journal.pone.0043582
  • Chimenti, F., Bizzarri, B., Bolasco, A., Secci, D., Chimenti, P., Granese, A., Carradori, S., D’Ascenzio, M., Lilli, D., & Rivanera, D. (2011). Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as Anti-Candida Spp. agents. European Journal of Medicinal Chemistry, 46(1), 378–382. https://doi.org/10.1016/j.ejmech.2010.10.027
  • Cruz, L., Lopes, L., de Camargo Ribeiro, F., de Sá, N., Lino, C., Tharmalingam, N., de Oliveira, R., Rosa, C., Mylonakis, E., Fuchs, B., & Johann, S. (2018). Anti-candida albicans activity of thiazolylhydrazone derivatives in invertebrate and murine models. Journal of Fungi, 4(4), 134. https://doi.org/10.3390/jof4040134
  • Damale, M., Harke, S., Kalam Khan, F., Shinde, D., & Sangshetti, J. (2014). Recent advances in multidimensional QSAR (4D-6D): A critical review. Mini-Reviews in Medicinal Chemistry, 14(1), 35–55. https://doi.org/10.2174/13895575113136660104
  • de Oliveira, M. T., & Katekawa, E. (2018). On the virtues of automated quantitative structure–activity relationship: The new kid on the block. Future Medicinal Chemistry, 10(3), 335–342. https://doi.org/10.4155/fmc-2017-0170
  • Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐consistent molecular‐orbital methods. IX. An extended Gaussian‐type basis for molecular‐orbital studies of organic molecules. Journal of Chemical Physics, 54(2), 724–728. https://doi.org/10.1063/1.1674902
  • Ferreira, G. M., Magalhães, J. G., de, Maltarollo, V. G., Kronenberger, T., Ganesan, A., Emery, F. d S., & Trossini, G. H. G. (2020). QSAR studies on the Human Sirtuin 2 inhibition by non-covalent 7,5,2-anilinobenzamide derivatives. Journal of Biomolecular Structure and Dynamics, 38(2), 354–363. https://doi.org/10.1080/07391102.2019.1574603
  • Gertrudes, J. C., Maltarollo, V. G., Silva, R. A., Oliveira, P. R., Honorio, K. M., & da Silva, A. B. F. (2012). Machine learning techniques and drug design. Current Medicinal Chemistry, 19(25), 4289–4297. https://doi.org/10.2174/092986712802884259
  • Golbraikh, A., & Tropsha, A. (2002). Beware of Q2!. Journal of Molecular Graphics and Modelling, 20(4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
  • Golbraikh, A., Shen, M., Xiao, Z., Xiao, Y.-D., & Lee, K.-H. (2013). Rational selection of training and test sets for the development of validated QSAR Models. Journal of Computer-Aided Molecular Design, 17, 241–253. https://doi.org/10.1023/A:1025386326946
  • Gramatica, P. (2020). Principles of QSAR Modeling: Comments and suggestions from personal experience. International Journal of Quantitative Structure-Property Relationships, 5(3), 61–97. https://doi.org/10.4018/IJQSPR.20200701.oa1
  • Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and cambridge structural database. Journal of Chemical Information and Modeling, 50(4), 572–584. https://doi.org/10.1021/ci100031x
  • Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR Studies: Theory and application. Journal of the Brazilian Chemical Society, 20(4), 770–787. https://doi.org/10.1590/S0103-50532009000400021
  • Knoke, M., & Schwesinger, G. (1994). One hundred years ago: The history of Crytococcosis in Greifswald. Medical mycology in the Nineteenth Century. Mycoses, 37(7–8), 229–233. https://doi.org/10.1111/j.1439-0507.1994.tb00418.x
  • Kronenberger, T., Asse, L. R., Wrenger, C., Trossini, G. H. G., Honorio, K. M., & Maltarollo, V. G. (2017). Studies of Staphylococcus Aureus FabI Inhibitors: Fragment-based approach based on holographic structure–activity relationship analyses. Future Medicinal Chemistry, 9(2), 135–151. https://doi.org/10.4155/fmc-2016-0179
  • Kronenberger, T., Windshügel, B., Wrenger, C., Honorio, K. M., & Maltarollo, V. G. (2018). On the relationship of anthranilic derivatives structure and the FXR (Farnesoid X Receptor) agonist activity. Journal of Biomolecular Structure and Dynamics, 36(16), 4378–4391. https://doi.org/10.1080/07391102.2017.1417161
  • Krysan, D. J. (2016). Challenges in the development of novel anticryptococcal agents. Future Medicinal Chemistry, 8(12), 1375–1377. https://doi.org/10.4155/fmc-2016-0123
  • Larsen, R. A. (1990). Fluconazole compared with Amphotericin B plus flucytosine for cryptococcal meningitis in AIDS. Annals of Internal Medicine, 113(3), 183–187. https://doi.org/10.7326/0003-4819-113-3-183.
  • Lavecchia, A. (2015). Machine-learning approaches in drug discovery: Methods and applications. Drug Discovery Today, 20(3), 318–331. https://doi.org/10.1016/j.drudis.2014.10.012
  • Lino, C. I., Gonçalves de Souza, I., Borelli, B. M., Silvério Matos, T. T., Santos Teixeira, I. N., Ramos, J. P., Maria de Souza Fagundes, E., de Oliveira Fernandes, P., Maltarollo, V. G., Johann, S., & de Oliveira, R. B. (2018). Synthesis, molecular modeling studies and evaluation of antifungal activity of a novel series of thiazole derivatives. European Journal of Medicinal Chemistry, 151, 248–260. https://doi.org/10.1016/j.ejmech.2018.03.083
  • Maltarollo, V. G. (2019). Classification of staphylococcus Aureus FabI inhibitors by machine learning techniques. International Journal of Quantitative Structure-Property Relationships, 4(4), 1–14. https://doi.org/10.4018/IJQSPR.2019100101.
  • Maltarollo, V. G., & Honório, K. M. (2013). Applications of artificial neural networks in chemical problems. In Artificial neural networks - architectures and applications. Artificial Neural Networks: Architectures and Applications.
  • Maltarollo, V. G., Gertrudes, J. C., Oliveira, P. R., & Honorio, K. M. (2015). Applying machine learning techniques for ADME-Tox prediction: A review. Expert Opinion on Drug Metabolism & Toxicology, 11(2), 259–271. https://doi.org/10.1517/17425255.2015.980814
  • Maltarollo, V. G., Honório, K. M., Emery, F. S., Ganesan, A., & Trossini, G. H. (2015). Hologram quantitative structure–Activity relationship and comparative molecular interaction field analysis of Aminothiazole and Thiazolesulfonamide as reversible LSD1 inhibitors. Future Medicinal Chemistry, 7(11), 1381–1394. https://doi.org/10.4155/fmc.15.68
  • Maltarollo, V. G., Resende, M. F., de, Kronenberger, T., Lino, C. I., Sampaio, M. C. P. D., Pitta, M. G. d R., Rêgo, M. J. B. d M., Labanca, R. A., & Oliveira, R. B. d. (2019). In Vitro and in silico studies of antioxidant activity of 2-thiazolylhydrazone derivatives. Journal of Molecular Graphics and Modelling, 86, 106–112. https://doi.org/10.1016/j.jmgm.2018.10.007
  • Martin, T. M., Harten, P., Young, D. M., Muratov, E. N., Golbraikh, A., Zhu, H., & Tropsha, A. (2012). Does rational selection of training and test sets improve the outcome of QSAR modeling? Journal of Chemical Information and Modeling, 52(10), 2570–2578. https://doi.org/10.1021/ci300338w
  • Martins, J. P. A., & Ferreira, M. M. C. (2013). QSAR Modeling: A new open source computational package to generate and validate QSAR Models. Química Nova, 36(4), 554–560. https://doi.org/10.1590/S0100-40422013000400013
  • Martins, J. P. A., Barbosa, E. G., Pasqualoto, K. F. M., & Ferreira, M. M. C. (2009). LQTA-QSAR: A New 4D-QSAR methodology. Journal of Chemical Information and Modeling, 49(6), 1428–1436. https://doi.org/10.1021/ci900014f
  • Martins, J. P. A., Oliveira, M. A. R. d., & Queiroz, M. S. O. d. (2018). Web-4D-QSAR: A web-based application to generate 4D-QSAR Descriptors. Journal of Computational Chemistry, 39(15), 917–924. https://doi.org/10.1002/jcc.25166
  • Mauri, A., Consonni, V., Pavan, M., & Todeschini, R. (2006). Dragon software: An easy approach to molecular descriptor calculations. 12.
  • Maziarz, E. K., & Perfect, J. R. (2016). Cryptococcosis. Infectious Disease Clinics, 30(1), 179–206. https://doi.org/10.1016/j.idc.2015.10.006
  • Muhammad, U., Uzairu, A., & Ebuka Arthur, D. (2018). Review on: Quantitative Structure Activity Relationship (QSAR) modeling. Journal of Analytical & Pharmaceutical Research, 7(2), 240–242. https://doi.org/10.15406/japlr.2018.07.00232
  • Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V., Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, I. I., Varnek, A., Roitberg, A., Isayev, O., Curtalolo, S., Fourches, D., Cohen, Y., Aspuru-Guzik, A., Winkler, D. A., Agrafiotis, D., Cherkasov, A., & Tropsha, A. (2020). QSAR without borders. Chemical Society Reviews, 49(11), 3525–3564. https://doi.org/10.1039/D0CS00098A
  • Myint, K. Z., & Xie, X.-Q. (2010). Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. International Journal of Molecular Sciences, 11(10), 3846–3866. https://doi.org/10.3390/ijms11103846
  • Ojha, P. K., Mitra, I., Das, R. N., & Roy, K. (2011). Further exploring Rm2 metrics for validation of QSPR models. Chemometrics and Intelligent Laborary Systems, 107(1), 194–205. https://doi.org/10.1016/j.chemolab.2011.03.011
  • Oprea, T. I. (2002). On the information content of 2D and 3D descriptors for QSAR. Journal of the Brazilian Chemical Society, 13(6), 811–815. https://doi.org/10.1590/S0103-50532002000600013
  • Organization for Economic Co-operation and Development, OECD. (2007). GUIDANCE document on the validation of (quantitative)structure-activity relationships [(Q)SAR] models.
  • Pereira de Sá, N., Lino, C. I., Fonseca, N. C., Borelli, B. M., Ramos, J. P., Souza-Fagundes, E. M., Rosa, C. A., Santos, D. A., Barbosa de Oliveira, R., & Johann, S. (2015). Thiazole compounds with activity against cryptococcus gattii and cryptococcus neoformans in vitro. European Journal of Medicinal Chemistry, 102, 233–242. https://doi.org/10.1016/j.ejmech.2015.07.032
  • Perfect, J. R., & Bicanic, T. (2015). Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genetics and Biology, 78, 49–54. https://doi.org/10.1016/j.fgb.2014.10.003
  • Puzyn, T., Mostrag-Szlichtyng, A., Gajewicz, A., Skrzyński, M., & Worth, A. P. (2011). Investigating the influence of data splitting on the predictive ability of QSAR/QSPR Models. Structural Chemistry, 22(4), 795–804. https://doi.org/10.1007/s11224-011-9757-4
  • Resende, M. F. d., Lino, C. I., Souza-Fagundes, E. M. d., Rettore, J. V. P., Oliveira, R. B. d., Labanca, R. A., Resende, M. F. d., Lino, C. I., Souza-Fagundes, E. M. d., Rettore, J. V. P., Oliveira, R. B. d., & Labanca, R. A. (2019). Assessment of anti-diabetic activity of a novel hydrazine-thiazole derivative: in vitro and in vivo method. Brazilian Journal of Pharmaceutical Sciences, 55, 55–69.e18218. https://doi.org/10.1590/s2175-97902019000118218
  • Roy, K., & Mitra, I. (2012). On the use of the metric Rm 2 as an effective tool for validation of QSAR models in computational drug design and predictive toxicology. Mini - Reviews in Medicinal Chemistry, 12(6), 491–504. https://doi.org/10.2174/138955712800493861
  • Roy, K., Kar, S., & Das, R. N. (2015). A primer on QSAR/QSPR modeling: Fundamental concepts. SpringerBriefs in Molecular Science; Springer International Publishing. https://doi.org/10.1007/978-3-319-17281-1.
  • Ruiz, A., Neilson, J. B., & Bulmer, G. S. (1982). Control of Cryptococcus neoformans in nature by biotic factors. Sabouraudia, 20(1), 21–29. https://doi.org/10.1080/00362178285380051
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Sarmiento, G. P., Martini, M. F., Vitale, R. G., Fabian, L. E., Afeltra, J., Vega, D., Moltrasio, G. Y., & Moglioni, A. G. (2019). N-Haloacetyl Phenothiazines and Derivatives: preparation, characterization and structure-activity relationship for antifungal activity. Arabian Journal of Chemistry, 12(1), 21–32. https://doi.org/10.1016/j.arabjc.2017.11.019
  • Silva, I. R., Kronenberger, T., Gomes, E. C. L., César, I. C., Oliveira, R. B., & Maltarollo, V. G. (2021). Improving the solubility of an antifungal thiazolyl hydrazone derivative by cyclodextrin complexation. European Journal of Pharmaceutical Sciences, 156, 105575. https://doi.org/10.1016/j.ejps.2020.105575
  • Sionov, E., Chang, Y. C., & Kwon-Chung, K. J. (2013). Azole heteroresistance in cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrobial Agents and Chemotherapy, 57(10), 5127–5130. https://doi.org/10.1128/AAC.00694-13
  • Sionov, E., Lee, H., Chang, Y. C., & Kwon-Chung, K. J. (2010). Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathogens, 6(4), e1000848. https://doi.org/10.1371/journal.ppat.1000848
  • Steenbergen, J. N., Shuman, H. A., & Casadevall, A. (2001). Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and intracellular pathogenic strategy in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 98(26), 15245–15250. https://doi.org/10.1073/pnas.261418798
  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45), 11623–11627. https://doi.org/10.1021/j100096a001
  • Teófilo, R. F., Martins, J. P. A., & Ferreira, M. M. C. (2009). Sorting variables by using informative vectors as a strategy for feature selection in multivariate regression. Journal of Chemometrics, 23(1), 32–48. https://doi.org/10.1002/cem.1192
  • Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR & Combinatorial Science, 22(1), 69–77. https://doi.org/10.1002/qsar.200390007
  • Umamatheswari, S., Balaji, B., Ramanathan, M., & Kabilan, S. (2011). Synthesis, stereochemistry, antimicrobial evaluation and QSAR studies of 2,6-Diaryltetrahydropyran-4-One Thiosemicarbazones. European Journal of Medicinal Chemistry, 46(4), 1415–1424. https://doi.org/10.1016/j.ejmech.2011.01.029
  • Veríssimo, G. C., Menezes Dutra, E. F., Teotonio Dias, A. L., de Oliveira Fernandes, P., Kronenberger, T., Gomes, M. A., & Maltarollo, V. G. (2019). HQSAR and random forest-based QSAR Models for Anti-T. Vaginalis activities of nitroimidazoles derivatives. Journal of Molecular Graphics and Modelling, 90, 180–191. https://doi.org/10.1016/j.jmgm.2019.04.007
  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-Regression: A basic tool of chemometrics. Chemometrics and Intelligent Laborary Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
  • Yap, C. W. (2011). PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.