1,343
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors

ORCID Icon, , , &
Pages 9897-9908 | Received 18 Dec 2020, Accepted 24 May 2021, Published online: 22 Jun 2021

References

  • Abdelrahman, Z., Li, M., & Wang, X. (2020). Comparative review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Frontiers in Immunology, 11, 2309. https://doi.org/10.3389/fimmu.2020.552909
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmed, S. S. S. J., Paramasivam, P., Raj, K., Kumar, V., Murugesan, R., & Ramakrishnan, V. (2020). Regulatory cross talk between SARS-CoV-2 receptor binding and replication machinery in the human host. Frontiers in Physiology, 11, 802. https://doi.org/10.3389/fphys.2020.00802
  • Barducci, A., Bussi, G., & Parrinello, M. (2008). Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, 100(2), 020603–020604. https://doi.org/10.1103/PhysRevLett.100.020603
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y.-J., Strauch, E.-M., Stewart, L., Diamond, M. S., Veesler, D., & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science (New York, N.Y.), 370(6515), 426–431. https://doi.org/10.1126/science.abd9909
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., & Jiang, S. (2009). The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • El Bairi, K., Trapani, D., Petrillo, A., Le Page, C., Zbakh, H., Daniele, B., Belbaraka, R., Curigliano, G., & Afqir, S. (2020). Repurposing anticancer drugs for the management of COVID-19. European Journal of Cancer (Oxford, England: 1990), 141, 40–61. https://doi.org/10.1016/j.ejca.2020.09.014
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W. B., Fedorov, O., Morse, E. M., Keates, T., Hickman, T. T., Felletar, I., Philpott, M., Munro, S., McKeown, M. R., Wang, Y., Christie, A. L., West, N., Cameron, M. J., Schwartz, B., Heightman, T. D., … Bradner, J. E. (2010). Selective inhibition of BET bromodomains. Nature, 468(7327), 1067–1073. https://doi.org/10.1038/nature09504
  • (a) Gordon, D. E., Hiatt, J., Bouhaddou, M., Rezelj, V. V., Ulferts, S., Braberg, H., Jureka, A. S., Obernier, K., Guo, J. Z., Batra, J., Kaake, R. M., Weckstein, A. R., Owens, T. W., Gupta, M., Pourmal, S., Titus, E. W., Cakir, M., Soucheray, M., McGregor, M., … Krogan, N. J. (2020). Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, 370(6521), eabe9403. https://doi.org/10.1126/science.abe9403
  • (b) Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Guy, R. K., DiPaola, R. S., Romanelli, F., & Dutch, R. E. (2020). Rapid repurposing of drugs for COVID-19. Science (New York, N.Y.), 368(6493), 829–830. https://doi.org/10.1126/science.abb9332
  • Harris, R., Olson, A. J., & Goodsell, D. S. (2007). Automated prediction of ligand-binding sites in proteins. Proteins: Structure, Function, and Bioinformatics, 70(4), 1506–1517. https://doi.org/10.1002/prot.21645
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Laio, A., & Parrinello, M. (2002). Escaping free-energy minima. Proceedings of the National Academy of Sciences, 99(20), 12562–12566. https://doi.org/10.1073/pnas.202427399
  • Li, J., Guo, M., Tian, X., Wang, X., Yang, X., Wu, P., Liu, C., Xiao, Z., Qu, Y., Yin, Y., Wang, C., Zhang, Y., Zhu, Z., Liu, Z., Peng, C., Zhu, T., & Liang, Q. (2021). Virus-Host interactome and proteomic survey reveal potential virulence factors influencing SARS-CoV-2 pathogenesis. Med (New York, N.Y.), 2(1), 99–112.e7. https://doi.org/10.1016/j.medj.2020.07.002
  • Liu, B., Li, M., Zhou, Z., Guan, X., & Xiang, Y. (2020). Can we use interleukin-6 (IL-6) blockade for coronavirus disease 2019 (COVID-19)-induced cytokine release syndrome (CRS)? Journal of Autoimmunity, 111, 102452. https://doi.org/10.1016/j.jaut.2020.102452
  • MacKerell, a D., Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
  • Mandala, V. S., McKay, M. J., Shcherbakov, A. A., Dregni, A. J., Kolocouris, A., & Hong, M. (2020). Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nature Structural & Molecular Biology, 27(12), 1202–1208. https://doi.org/10.1038/s41594-020-00536-8
  • Marcelo Zaldini, H., Suellen Melo, T. C., Diogo Rodrigo, M. M., Walter Filgueira de Azevedo, J., & Ana Cristina Lima, L. (2010). Halogen atoms in the modern medicinal chemistry: Hints for the drug design. Current Drug Targets, 11, 303–314.
  • Mehta, P., McAuley, D. F., Brown, M., Sanchez, E., Tattersall, R. S., Manson, J. J., & Collaboration, H. A. S. (2020). COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet (London, England), 395(10229), 1033–1034. https://doi.org/10.1016/S0140-6736(20)30628-0
  • Menéndez, C. A., Byléhn, F., Perez-Lemus, G. R., Alvarado, W., & de Pablo, J. J. (2020). Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Science Advances, 6(37), eabd0345. https://doi.org/10.1126/sciadv.abd0345
  • Moreira, R. A., Chwastyk, M., Baker, J. L., Guzman, H. V., & Poma, A. B. (2020). Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale, 12(31), 16409–16413. https://doi.org/10.1039/d0nr03969a
  • Moreira, R. A., Guzman, H. V., Boopathi, S., Baker, J. L., & Poma, A. B. (2020). Characterization of structural and energetic differences between conformations of the SARS-CoV-2 spike protein. Materials, 13(23), 5362. https://doi.org/10.3390/ma13235362
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Pardo, J., Shukla, A. M., Chamarthi, G., & Gupte, A. (2020). The journey of remdesivir: From Ebola to COVID-19. Drugs in Context, 9, 1–9. https://doi.org/10.7573/dic.2020-4-14
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pennington, L. D., & Moustakas, D. T. (2017). The necessary nitrogen atom: A versatile high-impact design element for multiparameter optimization. Journal of Medicinal Chemistry, 60(9), 3552–3579. https://doi.org/10.1021/acs.jmedchem.6b01807
  • Pierre, F., Chua, P. C., O'Brien, S. E., Siddiqui-Jain, A., Bourbon, P., Haddach, M., Michaux, J., Nagasawa, J., Schwaebe, M. K., Stefan, E., Vialettes, A., Whitten, J. P., Chen, T. K., Darjania, L., Stansfield, R., Anderes, K., Bliesath, J., Drygin, D., Ho, C., … Ryckman, D. M. (2011). Discovery and SAR of 5-(3-chlorophenylamino)benzo[c][2,6]naphthyridine-8-carboxylic acid (CX-4945), the first clinical stage inhibitor of protein kinase CK2 for the treatment of cancer. Journal of Medicinal Chemistry, 54(2), 635–654. https://doi.org/10.1021/jm101251q
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P.-Y. (2021). Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116–121. https://doi.org/10.1038/s41586-020-2895-3
  • Poduri, R., Joshi, G., & Jagadeesh, G. (2020). Drugs targeting various stages of the SARS-CoV-2 life cycle: Exploring promising drugs for the treatment of Covid-19. Cellular Signalling, 74, 109721. https://doi.org/10.1016/j.cellsig.2020.109721
  • Poma, A. B., Chwastyk, M., & Cieplak, M. (2015). Polysaccharide-Protein complexes in a coarse-grained model. The Journal of Physical Chemistry. B, 119(36), 12028–12041. https://doi.org/10.1021/acs.jpcb.5b06141
  • Reich, S. H., Sprengeler, P. A., Chiang, G. G., Appleman, J. R., Chen, J., Clarine, J., Eam, B., Ernst, J. T., Han, Q., Goel, V. K., Han, E. Z. R., Huang, V., Hung, I. N. J., Jemison, A., Jessen, K. A., Molter, J., Murphy, D., Neal, M., Parker, G. S., … Webster, K. R. (2018). Structure-based design of pyridone-aminal eFT508 targeting dysregulated translation by selective mitogen-activated protein kinase interacting kinases 1 and 2 (MNK1/2) inhibition. Journal of Medicinal Chemistry, 61(8), 3516–3540. https://doi.org/10.1021/acs.jmedchem.7b01795
  • Sacco, M. D., Ma, C., Lagarias, P., Gao, A., Townsend, J. A., Meng, X., Dube, P., Zhang, X., Hu, Y., Kitamura, N., Hurst, B., Tarbet, B., Marty, M. T., Kolocouris, A., Xiang, Y., Chen, Y., & Wang, J. (2020). Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L. Science Advances, 6(50), eabe0751. https://doi.org/10.1126/sciadv.abe0751
  • Sadanandam, N., Debabrata, P., Mohd Aamir, K., Sudip, R., & Jayant, S. (2020). Potential drug candidates for SARS-CoV-2 using computational screening and enhanced sampling methods. ChemRxiv.
  • Saini, K. S., Lanza, C., Romano, M., de Azambuja, E., Cortes, J., de las Heras, B., de Castro, J., Lamba Saini, M., Loibl, S., Curigliano, G., Twelves, C., Leone, M., & Patnaik, M. M. (2020). Repurposing anticancer drugs for COVID-19-induced inflammation, immune dysfunction, and coagulopathy. British Journal of Cancer, 123(5), 694–697. https://doi.org/10.1038/s41416-020-0948-x
  • Schäfer, A., & Baric, R. S. (2017). Epigenetic Landscape During Coronavirus Infection. Pathogens (Basel, Switzerland), 6, 8.
  • Singh, T. U., Parida, S., Lingaraju, M. C., Kesavan, M., Kumar, D., & Singh, R. K. (2020). Drug repurposing approach to fight COVID-19. Pharmacological Reports, 72(6), 1479–1430. https://doi.org/10.1007/s43440-020-00155-6
  • Soukarieh, F., Nowicki, M. W., Bastide, A., Pöyry, T., Jones, C., Dudek, K., Patwardhan, G., Meullenet, F., Oldham, N. J., Walkinshaw, M. D., Willis, A. E., & Fischer, P. M. (2016). Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. European Journal of Medicinal Chemistry, 124, 200–217. https://doi.org/10.1016/j.ejmech.2016.08.047
  • Tang, Y., Liu, J., Zhang, D., Xu, Z., Ji, J., & Wen, C. (2020). Cytokine storm in COVID-19: The current evidence and treatment strategies. Frontiers in Immunology, 11, 1708–1708. https://doi.org/10.3389/fimmu.2020.01708
  • Tharappel, A. M., Samrat, S. K., Li, Z., & Li, H. (2020). Targeting crucial host factors of SARS-CoV-2. ACS Infectious Diseases, 6(11), 2844–2865. https://doi.org/10.1021/acsinfecdis.0c00456
  • Trezza, A., Iovinelli, D., Santucci, A., Prischi, F., & Spiga, O. (2020). An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Scientific Reports, 10(1), 13866. https://doi.org/10.1038/s41598-020-70863-9
  • Tutuncuoglu, B., Cakir, M., Batra, J., Bouhaddou, M., Eckhardt, M., Gordon, D. E., & Krogan, N. J. (2020). The landscape of human cancer proteins targeted by SARS-CoV-2. Cancer Discovery, 10(7), 916–921. https://doi.org/10.1158/2159-8290.CD-20-0559
  • V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C., & Boeckler, F. M. (2013). Principles and applications of halogen bonding in medicinal chemistry and chemical biology. Journal of Medicinal Chemistry, 56(4), 1363–1388. https://doi.org/10.1021/jm3012068
  • Yang, J., Petitjean, S. J., Koehler, M., Zhang, Q., Dumitru, A. C., Chen, W., Derclaye, S., Vincent, S. P., Soumillion, P., & Alsteens, D. (2020). Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature Communications, 11(1), 1–10. https://doi.org/10.1038/s41467-020-18319-6
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 14. https://doi.org/10.1038/s41421-020-0153-3
  • Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667-e676. doi: 10.1016/S2589-7500(20)30192-8
  • Ziebuhr, J. (2004). Molecular biology of severe acute respiratory syndrome coronavirus. Current Opinion in Microbiology, 7(4), 412–419. https://doi.org/10.1016/j.mib.2004.06.007
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.