455
Views
13
CrossRef citations to date
0
Altmetric
Research Articles

Identification of plant-based hexokinase 2 inhibitors: combined molecular docking and dynamics simulation studies

, ORCID Icon, , , , , & ORCID Icon show all
Pages 10319-10331 | Received 18 May 2021, Accepted 07 Jun 2021, Published online: 28 Jun 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altis, A., Otten, M., Nguyen, P. H., Hegger, R., & Stock, G. (2008). Construction of the free energy landscape of biomolecules via dihedral angle principal component analysis. The Journal of Chemical Physics, 128(24), 245102. https://doi.org/10.1063/1.2945165
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Anderson, M., Marayati, R., Moffitt, R., & Yeh, J. J. (2017). Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget, 8(34), 56081–56094. https://doi.org/10.18632/oncotarget.9760
  • Anwar, S., Shamsi, A., Shahbaaz, M., Queen, A., Khan, P., Hasan, G. M., Islam, A., Alajmi, M. F., Hussain, A., Ahmad, F., & Hassan, M. I. (2020). Rosmarinic acid exhibits anticancer effects via MARK4 inhibition. Scientific Reports, 10(1), 10300. https://doi.org/10.1038/s41598-020-65648-z
  • Arunkumar, R., Sharmila, G., Elumalai, P., Senthilkumar, K., Banudevi, S., Gunadharini, D., Benson, C., Daisy, P., & Arunakaran, J. (2012). Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 19(10), 912–923. https://doi.org/10.1016/j.phymed.2012.04.009
  • Beg, A., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). High throughput screening, docking, and molecular dynamics studies to identify potential inhibitors of human calcium/calmodulin-dependent protein kinase IV. Journal of Biomolecular Structure & Dynamics, 37(8), 2179–2192. https://doi.org/10.1080/07391102.2018.1479310
  • Biovia, D. S. (2015). Discovery Studio Modeling Environment, release 4.5. Dassault Systèmes.
  • Cheng, G., Zielonka, J., Ouari, O., Lopez, M., McAllister, D., Boyle, K., Barrios, C. S., Weber, J. J., Johnson, B. D., Hardy, M., Dwinell, M. B., & Kalyanaraman, B. (2016). Mitochondria-targeted analogues of metformin exhibit enhanced antiproliferative and radiosensitizing effects in pancreatic cancer cells. Cancer Research, 76(13), 3904–3915. https://doi.org/10.1158/0008-5472.CAN-15-2534
  • Crompton, M., Barksby, E., Johnson, N., & Capano, M. (2002). Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie, 84(2–3), 143–152. https://doi.org/10.1016/s0300-9084(02)01368-8
  • Czernin, J., & Phelps, M. E. (2002). Positron emission tomography scanning: Current and future applications. Annual Review of Medicine, 53, 89–112. https://doi.org/10.1146/annurev.med.53.082901.104028
  • Dahiya, R., Mohammad, T., Gupta, P., Haque, A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019). Molecular interaction studies on ellagic acid for its anticancer potential targeting pyruvate dehydrogenase kinase 3. RSC Advances, 9(40), 23302–23315. https://doi.org/10.1039/C9RA02864A
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Fatima, S., Mohammad, T., Jairajpuri, D. S., Rehman, M. T., Hussain, A., Samim, M., Ahmad, F. J., Alajmi, M. F., & Hassan, M. I. (2020). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure & Dynamics, 38(12), 3610–3620. https://doi.org/10.1080/07391102.2019.1664937
  • Gulzar, M., Syed, S. B., Khan, F. I., Khan, P., Ali, S., Hasan, G. M., Taneja, P., & Hassan, M. I. (2019). Elucidation of interaction mechanism of ellagic acid to the integrin linked kinase. International Journal of Biological Macromolecules, 122, 1297–1304. https://doi.org/10.1016/j.ijbiomac.2018.09.089
  • Guo, C., Ludvik, A. E., Arlotto, M. E., Hayes, M. G., Armstrong, L. L., Scholtens, D. M., Brown, C. D., Newgard, C. B., Becker, T. C., Layden, B. T., Lowe, W. L., & Reddy, T. E. (2015). Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nature Communications, 6(1), 1–8. https://doi.org/10.1038/ncomms7069
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M., AlAjmi, M. F., Islam, A., Ahmad, F., & Hassan, M. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635. https://doi.org/10.1155/2020/2094635
  • Gupta, P., Mohammad, T., Dahiya, R., Roy, S., Noman, O. M. A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019). Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Scientific Reports, 9(1), 18727. https://doi.org/10.1038/s41598-019-55199-3
  • Gupta, P., Mohammad, T., Khan, P., Alajmi, M. F., Hussain, A., Rehman, M. T., & Hassan, M. I. (2019). Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomedicine & Pharmacotherapy, 118, 109245. https://doi.org/10.1016/j.biopha.2019.109245
  • Hassan, M. I., Kumar, V., Singh, T. P., & Yadav, S. (2007). Structural model of human PSA: A target for prostate cancer therapy. Chemical Biology & Drug Design, 70(3), 261–267. https://doi.org/10.1111/j.1747-0285.2007.00553.x
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., Ahmad, F., & Jayaram, B. (2016). Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 34(3), 572–584. https://doi.org/10.1080/07391102.2015.1046934
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5(24), 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 285–289. https://doi.org/10.1038/s41586-020-2223-y
  • Khan, F. I., Wei, D. Q., Gu, K. R., Hassan, M. I., & Tabrez, S. (2016). Current updates on computer aided protein modeling and designing. International Journal of Biological Macromolecules, 85, 48–62. https://doi.org/10.1016/j.ijbiomac.2015.12.072S0141-8130(15)30260-9
  • Khan, P., Rahman, S., Queen, A., Manzoor, S., Naz, F., Hasan, G. M., Luqman, S., Kim, J., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and in vitro studies. Scientific Reports, 7(1), 9470. https://doi.org/10.1038/s41598-017-09941-4
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1848634
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98(5), 861–871. https://doi.org/10.1016/j.bpj.2009.11.011
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
  • Lin, H., Zeng, J., Xie, R., Schulz, M. J., Tedesco, R., Qu, J., Erhard, K. F., Mack, J. F., Raha, K., Rendina, A. R., Szewczuk, L. M., Kratz, P. M., Jurewicz, A. J., Cecconie, T., Martens, S., McDevitt, P. J., Martin, J. D., Chen, S. B., Jiang, Y., … Luengo, J. I. (2016). Discovery of a novel 2, 6-disubstituted glucosamine series of potent and selective hexokinase 2 inhibitors. ACS Medicinal Chemistry Letters, 7(3), 217–222. https://doi.org/10.1021/acsmedchemlett.5b00214
  • Lipinski, C. A. (2000). Drug-like properties and the causes of poor solubility and poor permeability. Journal of Pharmacological and Toxicological Methods, 44(1), 235–249. https://doi.org/10.1016/S1056-8719(00)00107-6
  • Lis, P., Dyląg, M., Niedźwiecka, K., Ko, Y. H., Pedersen, P. L., Goffeau, A., & Ułaszewski, S. (2016). The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: Targets for effective therapy with 3-bromopyruvate. Molecules, 21(12), 1730. https://doi.org/10.3390/molecules21121730
  • Lunt, S. Y., & Vander Heiden, M. G. (2011). Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annual Review of Cell and Developmental Biology, 27, 441–464. https://doi.org/10.1146/annurev-cellbio-092910-154237
  • Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., Chandel, N. S., Thompson, C. B., Robey, R. B., & Hay, N. (2004). Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Molecular Cell, 16(5), 819–830. https://doi.org/10.1016/j.molcel.2004.11.014
  • Marsh, J., & Teichmann, S. (2011). Relative Solvent Accessible Surface Area Predicts Protein Conformational Changes upon Binding. Structure, 19(6), 859–867. https://doi.org/10.1016/j.str.2011.03.010
  • Maschek, G., Savaraj, N., Priebe, W., Braunschweiger, P., Hamilton, K., Tidmarsh, G. F., De Young, L. R., & Lampidis, T. J. (2004). 2-Deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Research, 64(1), 31–34. https://doi.org/10.1158/0008-5472.CAN-03-3294
  • Mathupala, S., Ko, Y. A., & Pedersen, P. (2006). Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene, 25(34), 4777–4786. https://doi.org/10.1038/sj.onc.1209603
  • Mathupala, S. P., Ko, Y. H., & Pedersen, P. L. (2009). Hexokinase-2 bound to mitochondria: Cancer's stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Seminars in Cancer Biology, 19(1), 17–24. https://doi.org/10.1016/j.semcancer.2008.11.006
  • Mazola, Y., Guirola, O., Palomares, S., Chinea, G., Menéndez, C., Hernández, L., & Musacchio, A. (2015). A comparative molecular dynamics study of thermophilic and mesophilic β-fructosidase enzymes. Journal of Molecular Modeling, 21(9), 228. https://doi.org/10.1007/s00894-015-2772-4
  • Mohammad, T., Batra, S., Dahiya, R., Baig, M. H., Rather, I. A., Dong, J.-J., & Hassan, I. (2019). Identification of high-affinity inhibitors of cyclin-dependent kinase 2 towards anticancer therapy. Molecules, 24(24), 4589. https://doi.org/10.3390/molecules24244589
  • Mohammad, T., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). Journal of Biomolecular Structure & Dynamics, 37(7), 1813–1829. https://doi.org/10.1080/07391102.2018.1468282
  • Mohammad, T., Mathur, Y., & Hassan, M. I. (2020). InstaDock: A single-click graphical user interface for molecular docking-based virtual high-throughput screening. Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbaa279
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Naqvi, A. A. T., & Hassan, M. I. (2017). Methods for docking and drug designing. In S. Dastmalchi (Ed.), Oncology: Breakthroughs in research and practice (pp. 876–890). IGI Global.
  • Naz, H., Khan, P., Tarique, M., Rahman, S., Meena, A., Ahamad, S., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Binding studies and biological evaluation of β-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. International Journal of Biological Macromolecules, 96, 160–161. https://doi.org/10.1016/j.ijbiomac.2016.12.024
  • Pajak, B., Siwiak, E., Sołtyka, M., Priebe, A., Zieliński, R., Fokt, I., Ziemniak, M., Jaśkiewicz, A., Borowski, R., Domoradzki, T., & Priebe, W. (2019). 2-Deoxy-d-glucose and its analogs: From diagnostic to therapeutic agents. International Journal of Molecular Sciences, 21(1), 234. https://doi.org/10.3390/ijms21010234
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Patra, K. C., Wang, Q., Bhaskar, P. T., Miller, L., Wang, Z., Wheaton, W., Chandel, N., Laakso, M., Muller, W. J., Allen, E. L., Jha, A. K., Smolen, G. A., Clasquin, M. F., Robey, B., & Hay, N. (2013). Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell, 24(2), 213–228. https://doi.org/10.1016/j.ccr.2013.06.014
  • Robey, R. A., & Hay, N. (2006). Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene, 25(34), 4683–4696. https://doi.org/10.1038/sj.onc.1209595
  • Roy, S., Mohammad, T., Gupta, P., Dahiya, R., Parveen, S., Luqman, S., Hasan, G. M., & Hassan, M. I. (2020). Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: A chemopreventive role in lung cancer. ACS Omega, 5(34), 21550–21560.https://doi.org/10.1021/acsomega.0c02165
  • Schulze, A., & Harris, A. L. (2012). How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature, 491(7424), 364–373. https://doi.org/10.1038/nature11706
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M., Islam, A., & Hassan, M. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256
  • Shamsi, A., Shahwan, M., Khan, M. S., Husain, F. M., Alhumaydhi, F. A., Aljohani, A. S. M., Rehman, M. T., Hassan, M. I., & Islam, A. (2021). Elucidating the interaction of human ferritin with quercetin and naringenin: Implication of natural products in neurodegenerative diseases: Molecular docking and dynamics simulation insight. ACS Omega, 6(11), 7922–7930. https://doi.org/10.1021/acsomega.1c00527
  • Singh, S., Sharma, B., Kanwar, S. S., & Kumar, A. (2016). Lead phytochemicals for anticancer drug development. Frontiers in Plant Science, 7, 1667. https://doi.org/10.3389/fpls.2016.01667
  • Sterling, T., & Irwin, J. J. (2015). ZINC 15-ligand discovery for everyone. Journal of Chemical Information and Modeling, 55(11), 2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
  • Thakur, P. K., & Hassan, M. I. (2011). Discovering a potent small molecule inhibitor for gankyrin using de novo drug design approach. International Journal of Computational Biology and Drug Design, 4(4), 373–386. https://doi.org/10.1504/IJCBDD.2011.044404
  • Thakur, P. K., Kumar, J., Ray, D., Anjum, F., & Hassan, M. I. (2013). Search of potential inhibitor against New Delhi metallo-beta-lactamase 1 from a series of antibacterial natural compounds. Journal of Natural Science, Biology, and Medicine, 4(1), 51–56. https://doi.org/10.4103/0976-9668.107260
  • Turner, P. (2005). XMGRACE, Version 5.1. 19. Centre for Coastal Land-Margin Research, Oregon Graduate Institute for Science and Technology.
  • Wang, L., Xiong, H., Wu, F., Zhang, Y., Wang, J., Zhao, L., Guo, X., Chang, L.-J., Zhang, Y., You, M. J., Koochekpour, S., Saleem, M., Huang, H., Lu, J., & Deng, Y. (2014). Hexokinase 2-mediated Warburg effect is required for PTEN-and p53-deficiency-driven prostate cancer growth. Cell Reports, 8(5), 1461–1474. https://doi.org/10.1016/j.celrep.2014.07.053
  • Wilson, J. E. (2003). Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. Journal of Experimental Biology, 206(12), 2049–2057. https://doi.org/10.1242/jeb.00241
  • Wolf, A., Agnihotri, S., Micallef, J., Mukherjee, J., Sabha, N., Cairns, R., Hawkins, C., & Guha, A. (2011). Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. Journal of Experimental Medicine, 208(2), 313–326. https://doi.org/10.1084/jem.20101470
  • Yousuf, M., Khan, P., Shamsi, A., Shahbaaz, M., Hasan, G. M., Haque, Q. M. R., Christoffels, A., Islam, A., & Hassan, M. I. (2020). Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 5(42), 27480–27491. https://doi.org/10.1021/acsomega.0c03975
  • Yousuf, M., Shamsi, A., Khan, P., Shahbaaz, M., AlAjmi, M. F., Hussain, A., Hassan, G. M., Islam, A., Rizwanul Haque, Q. M., & Hassan, M. I. (2020). Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. International Journal of Molecular Sciences, 21(10), 3526. https://doi.org/10.3390/ijms21103526
  • Zhang, L., Ai, H., Chen, W., Yin, Z., Hu, H., Zhu, J., Zhao, J., Zhao, Q., & Liu, H. (2017). CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Scientific Reports, 7, 1–14.
  • Zhang, Z., Huang, S., Wang, H., Wu, J., Chen, D., Peng, B., & Zhou, Q. (2016). High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma. Biochemical and Biophysical Research Communications, 474(4), 673–679. https://doi.org/10.1016/j.bbrc.2016.05.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.