1,101
Views
12
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin‐resistant Staphylococcusaureus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 10561-10577 | Received 04 Feb 2021, Accepted 14 Jun 2021, Published online: 09 Jul 2021

References

  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2017). Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 77, 72–85. https://doi.org/10.1016/j.jmgm.2017.07.024
  • Alhadrami, H. A., Hamed, A. A., Hassan, H. M., Belbahri, L., Rateb, M. E., & Sayed, A. M. (2020). Flavonoids as potential anti-MRSA agents through modulation of PBP2a: A computational and experimental study. Antibiotics, 9(9), 562. https://doi.org/10.3390/antibiotics9090562
  • Ali, S., Khan, F. I., Mohammad, T., Lan, D., Hassan, M., & Wang, Y. (2019). Identification and evaluation of inhibitors of lipase from Malassezia restricta using virtual high-throughput screening and molecular dynamics studies. International Journal of Molecular Sciences, 20(4), 884. https://doi.org/10.3390/ijms20040884
  • Bai, Z., Chen, M., Lin, Q., Ye, Y., Fan, H., Wen, K., Zeng, J., Huang, D., Mo, W., Lei, Y., & Liao, Z. (2021). Identification of methicillin-resistant Staphylococcus aureus from methicillin-sensitive Staphylococcus aureus and molecular characterization in Quanzhou, China. Frontiers in Cell and Developmental Biology, 9, 6.
  • Brenk, R., Schipani, A., James, D., Krasowski, A., Gilbert, I. H., Frearson, J., & Wyatt, P. G. (2008). Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. ChemMedChem, 3(3), 435–444. https://doi.org/10.1002/cmdc.200700139
  • Chassagne, F., Cabanac, G., Hubert, G., David, B., & Marti, G. (2019). The landscape of natural product diversity and their pharmacological relevance from a focus on the Dictionary of Natural Products®. Phytochemistry Reviews, 18(3), 601–622. https://doi.org/10.1007/s11101-019-09606-2
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chomnawang, M. T., Surassmo, S., Wongsariya, K., & Bunyapraphatsara, N. (2009). Antibacterial activity of Thai medicinal plants against methicillin-resistant Staphylococcus aureus. Fitoterapia, 80(2), 102–104. https://doi.org/10.1016/j.fitote.2008.10.007
  • David, M. Z., Boyle-Vavra, S., Zychowski, D. L., & Daum, R. S. (2011). Methicillin-susceptible Staphylococcus aureus as a predominantly healthcare-associated pathogen: A possible reversal of roles? PLoS One, 6(4), e18217. https://doi.org/10.1371/journal.pone.0018217
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. http://www.pymol.org
  • Dixon, R. A. (2001). Natural products and plant disease resistance. Nature, 411(6839), 843–847. https://doi.org/10.1038/35081178
  • Elfiky, A. A., & Azzam, E. B. (2020). Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure & Dynamics, 39, 2923–2931. https://doi.org/10.1080/07391102.2020.1758789
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2020). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure & Dynamics, 39, 2857–2872. https://doi.org/10.1080/07391102.2020.1756411
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Fagerberg, J. H., Karlsson, E., Ulander, J., Hanisch, G., & Bergström, C. A. (2015). Computational prediction of drug solubility in fasted simulated and aspirated human intestinal fluid. Pharmaceutical Research, 32(2), 578–589. https://doi.org/10.1007/s11095-014-1487-z
  • Garoy, E. Y., Gebreab, Y. B., Achila, O. O., Tekeste, D. G., Kesete, R., Ghirmay, R., Kiflay, R., & Tesfu, T. (2019). Methicillin-resistant Staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients – A multicenter study in Asmara, Eritrea. Canadian Journal of Infectious Diseases and Medical Microbiology, 2019, 1–9. https://doi.org/10.1155/2019/8321834
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1080/07391102.2020.1752802 https://doi.org/10.1021/cc9800071
  • Gibbons, S. (2004). Anti-staphylococcal plant natural products. Natural Product Reports, 21(2), 263–277. https://doi.org/10.1039/b212695h
  • Gulzar, M., Syed, S. B., Khan, F. I., Khan, P., Ali, S., Hasan, G. M., Taneja, P., & Hassan, M. I. (2019). Elucidation of interaction mechanism of ellagic acid to the integrin linked kinase. International Journal of Biological Macromolecules, 122, 1297–1304. https://doi.org/10.1016/j.ijbiomac.2018.09.089
  • Hatano, T., Kusuda, M., Inada, K., Ogawa, T. O., Shiota, S., Tsuchiya, T., & Yoshida, T. (2005). Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry, 66(17), 2047–2055. https://doi.org/10.1016/j.phytochem.2005.01.013
  • Hone, R., & Keane, C. T. (1974). Characteristics of methicillin resistant Staphylococcus aureus. Irish Journal of Medical Science, 143(3), 145–154. https://doi.org/10.1007/BF03004756
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: Role and strength. eLS.
  • Khanna, V., & Ranganathan, S. (2009). Physicochemical property space distribution among human metabolites, drugs and toxins. BMC Bioinformatics, 10(S15), S10. https://doi.org/10.1186/1471-2105-10-S15-S10
  • Kokoska, L., Kloucek, P., Leuner, O., & Novy, P. (2019). Plant-derived products as antibacterial and antifungal agents in human health care. Current Medicinal Chemistry, 26(29), 5501–5541. https://doi.org/10.2174/0929867325666180831144344
  • Konaté, K., Mavoungou, J. F., Lepengué, A. N., Aworet-Samseny, R. R., Hilou, A., Souza, A., Dicko, M. H., & M'batchi, B. (2012). Antibacterial activity against β-lactamase producing methicillin and ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Annals of Clinical Microbiology and Antimicrobials, 11(1), 18. https://doi.org/10.1186/1476-0711-11-18
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899
  • Kuehnert, M. J., Hill, H. A., Kupronis, B. A., Tokars, J. I., Solomon, S. L., & Jernigan, D. B. (2005). Methicillin-resistant–Staphylococcus aureus hospitalizations, United States. Emerging Infectious Diseases, 11(6), 868–872. https://doi.org/10.3201/eid1106.040831
  • Kumar, S. P., Patel, C. N., Jha, P. C., & Pandya, H. A. (2017). Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding. Computational Biology and Chemistry, 71, 117–128. https://doi.org/10.1016/j.compbiolchem.2017.08.006
  • Kuzmanic, A., & Zagrovic, B. (2010). Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors. Biophysical Journal, 98(5), 861–871. https://doi.org/10.1016/j.bpj.2009.11.011
  • Lagorce, D., Sperandio, O., Galons, H., Miteva, M. A., & Villoutreix, B. O. (2008). FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics, 9(1), 396–399. https://doi.org/10.1186/1471-2105-9-396
  • Lawal, M., Verma, A. K., Umar, I. A., Gadanya, A. M., Umar, B., Yahaya, N. L., Balarabe, B. A., Usman, Z., & Adam, M. (2020). Analysis of new potent anti-diabetic molecules from phytochemicals of PistiaStrateotes with Sglt1 and G6pc proteins of Homo sapiens for treatment of diabetes mellitus. An in silico approach. IOSR Journal of Pharmacy and Biological Sciences, 15(4), 59–73. https://doi.org/10.9790/3008-1504025973
  • Lim, D., & Strynadka, N. C. (2002). Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nature Structural Biology, 9(11), 870–876. https://doi.org/10.1038/nsb858
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3–25. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Llarrull, L. I., Fisher, J. F., & Mobashery, S. (2009). Molecular basis and phenotype of methicillin resistance in Staphylococcus aureus and insights into new beta-lactams that meet the challenge. Antimicrobial Agents and Chemotherapy, 53(10), 4051–4063. https://doi.org/10.1128/AAC.00084-09
  • Lyskov, S., & Gray, J. J. (2008). The RosettaDock server for local protein-protein docking. Nucleic Acids Research, 36(Web Server issue), W233–W238. https://doi.org/10.1093/nar/gkn216
  • Mandalari, G., Bennett, R. N., Bisignano, G., Trombetta, D., Saija, A., Faulds, C. B., Gasson, M. J., & Narbad, A. (2007). Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, 103(6), 2056–2064. https://doi.org/10.1111/j.1365-2672.2007.03456.x
  • Maurya, S. K., Maurya, A. K., Mishra, N., & Siddique, H. R. (2020). Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. Journal of Receptors and Signal Transduction, 40(6), 605–612. https://doi.org/10.1080/10799893.2020.1772298
  • Miteva, M. A., Violas, S., Montes, M., Gomez, D., Tuffery, P., & Villoutreix, B. O. (2006). FAF-drugs: Free ADME/tox filtering of compound collections. Nucleic Acids Research, 34(Web Server issue), W738–W744. https://doi.org/10.1093/nar/gkl065
  • Monecke, S., Coombs, G., Shore, A. C., Coleman, D. C., Akpaka, P., Borg, M., Chow, H., Ip, M., Jatzwauk, L., Jonas, D., Kadlec, K., Kearns, A., Laurent, F., O'Brien, F. G., Pearson, J., Ruppelt, A., Schwarz, S., Scicluna, E., Slickers, P., … Ehricht, R. (2011). A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One, 6(4), e17936. https://doi.org/10.1371/journal.pone.0017936
  • Mun, S.-H., Lee, Y.-S., Han, S.-H., Lee, S.-W., Cha, S.-W., Kim, S-b., Seo, Y.-S., Kong, R., Kang, D.-H., Shin, D.-W., Kang, O.-H., & Kwon, D.-Y. (2015). In vitro potential effect of morin in the combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Foodborne Pathogens and Disease, 12(6), 545–550. https://doi.org/10.1089/fpd.2014.1923
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure & Dynamics, 39, 2673–2678. https://doi.org/10.1080/07391102.2020.1752802
  • Otero, L. H., Rojas-Altuve, A., Llarrull, L. I., Carrasco-Lopez, C., Kumarasiri, M., Lastochkin, E., Fishovitz, J., Dawley, M., Hesek, D., Lee, M., Johnson, J. W., Fisher, J. F., Chang, M., Mobashery, S., & Hermoso, J. A. (2013). How allosteric control of Staphylococcus aureus Penicillin Binding Protein 2a enables methicillin resistance and physiological function. Proceedings of the National Academy of Sciences of the United States of America, 110(42), 16808–16813. https://doi.org/10.1073/pnas.1300118110
  • Ouhara, K., Komatsuzawa, H., Kawai, T., Nishi, H., Fujiwara, T., Fujiue, Y., Kuwabara, M., Sayama, K., Hashimoto, K., & Sugai, M. (2008). Increased resistance to cationic antimicrobial peptide LL-37 in methicillin-resistant strains of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 61(6), 1266–1269. https://doi.org/10.1093/jac/dkn106
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2020). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure & Dynamics, 39, 2904–2913. https://doi.org/10.1080/07391102.2020.1757510
  • Pilot, P. (2016). Dassault Systèmes BIOVIA, discovery studio modelling environment.
  • Pushkaran, A. C., Vinod, V., Vanuopadath, M., Nair, S. S., Nair, S. V., Vasudevan, A. K., Biswas, R., & Mohan, C. G. (2019). Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-43201-x
  • Ramos, R. S., Macêdo, W. J. C., Costa, J. S., da Silva, C. H. T. d P., Rosa, J. M. C., da Cruz, J. N., de Oliveira, M. S., de Aguiar Andrade, E. H., E Silva, R. B. L., Souto, R. N. P., & Santos, C. B. R. (2020). Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: Study of the binding mode via docking and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 38(16), 4687–4709. https://doi.org/10.1080/07391102.2019.1688192
  • Rani, N., Vijayakumar, S., P T V, L., & Arunachalam, A. (2016). Allosteric site-mediated active site inhibition of PBP2a using quercetin 3-O-rutinoside and its combination. Journal of Biomolecular Structure & Dynamics, 34(8), 1778–1796. https://doi.org/10.1080/07391102.2015.1092096
  • Shimamura, T., Zhao, W. H., & Hu, Z. Q. (2007). Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infective Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Infective Agents), 6(1), 57–62. https://doi.org/10.2174/187152107779314124
  • Supriya, C., Sivareddy, C., Basaveswarao, M., Kalyani, C., & Deviswetha, V. (2017). Evaluation of anti bacterial activity and anti-inflammatory activity of diastase conjugated naringin. IOSR Journal of Pharmacy, 7(8), 2319–4219.
  • Taylor, P. W., Hamilton-Miller, J. M., & Stapleton, P. D. (2005). Antimicrobial properties of green tea catechins. Food Science and Technology Bulletin, 2, 71–81. https://doi.org/10.1616/1476-2137.14184
  • Thati, V., Shivannavar, C. T., & Gaddad, S. M. (2011). Vancomycin resistance among methicillin resistant Staphylococcus aureus isolates from intensive care units of tertiary care hospitals in Hyderabad. The Indian Journal of Medical Research, 134(5), 704–708. https://doi.org/10.4103/0971-5916.91001
  • Thomas, V. H., Bhattachar, S., Hitchingham, L., Zocharski, P., Naath, M., Surendran, N., Stoner, C. L., & El-Kattan, A. (2006). The road map to oral bioavailability: An industrial perspective. Expert Opinion on Drug Metabolism & Toxicology, 2(4), 591–608. https://doi.org/10.1517/17425255.2.4.591
  • Tietze, D., Kaufmann, D., Tietze, A. A., Voll, A., Reher, R., König, G., & Hausch, F. (2019). Structural and dynamical basis of G protein inhibition by YM-254890 and FR900359: An inhibitor in action. Journal of Chemical Information and Modeling, 59(10), 4361–4373. https://doi.org/10.1021/acs.jcim.9b00433
  • Usman Amin, M., Khurram, M., Khan, T., Faidah, H., Ullah Shah, Z., Ur Rahman, S., Haseeb, A., Ilyas, M., Ullah, N., Umar Khayam, S., & Iriti, M. (2016). Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus. International Journal of Molecular Sciences, 17(11), 1947. https://doi.org/10.3390/ijms17111947
  • Verma, A. K., Bala, H. A., Muhammad, I. I., Muhammad, A., Kori, A. R., & Barik, M. (2020). Virtual screening, molecular docking, pharmacokinetic, physicochemical and medicinal properties of potential curcumin derivatives against SARS-CoV-2 main protease (Mpro). Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry, 8(4), 153–179. https://doi.org/10.36673/AJPAMC.2020.v08.i04.A19
  • Verma, A. K., Maurya, S. K., Kumar, A., Barik, D. M., Yadav, D. V., Umar, B., Lawal, M., Usman, Z. A., Adam, M. A., & Balarabe, B. A. (2020). Inhibition of multidrug resistance property of Candida albicans by natural compounds of parthenium hysterophorus L. An in-silico approach. Journal of Pharmacognosy and Phytochemistry, 9(3), 55–64. https://doi.org/10.22271/phyto.2020.v9.i3a.11480
  • Wang, A., & Xu, Y. (2019). Synthesis and antibacterial activity of novel icariin derivatives. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 74(2), 73–78. https://doi.org/10.1691/ph.2019.8866PMID: 30782254.
  • Wu, S.-C., Yang, Z.-Q., Liu, F., Peng, W.-J., Qu, S.-Q., Li, Q., Song, X.-B., Zhu, K., & Shen, J.-Z. (2019). Antibacterial effect and mode of action of flavonoids from licorice against methicillin-resistant staphylococcus aureus. Frontiers in Microbiology, 10, 2489. https://doi.org/10.3389/fmicb.2019.02489
  • Yao, Q., Lin, M. T., Zhu, Y. D., Xu, H. L., & Zhao, Y. Z. (2018). Recent trends in potential therapeutic applications of the dietary flavonoid didymin. Molecules, 23(10), 2547. https://doi.org/10.3390/molecules23102547
  • Zhu, W., Zhang, Y., Sinko, W., Hensler, M. E., Olson, J., Molohon, K. J., Lindert, S., Cao, R., Li, K., Wang, K., Wang, Y., Liu, Y.-L., Sankovsky, A., de Oliveira, C. A. F., Mitchell, D. A., Nizet, V., McCammon, J. A., & Oldfield, E. (2013). Antibacterial drug leads targeting isoprenoid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 110(1), 123–128. https://doi.org/10.1073/pnas.1219899110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.