443
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2

ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 10519-10542 | Received 01 Apr 2021, Accepted 13 Jun 2021, Published online: 12 Jul 2021

References

  • Acar, N., Selçuki, C., & Coşkun, E. (2017). DFT and TDDFT investigation of the Schiff base formed by tacrine and saccharin. Journal of Molecular Modeling, 23(1), 17. https://doi.org/10.1007/s00894-016-3195-6
  • Aldahham, B. J., Al-Khafaji, K., Saleh, M. Y., Abdelhakem, A. M., Alanazi, A. M., & Islam, M. A. (2020). Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: A pharmacoinformatics study. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1851305
  • Amer, A. M., El-Eraky, W. I., & Mahgoub, S. (2018). Synthesis, characterization and antimicrobial activity of some novel quinoline derivatives bearing pyrazole and pyridine moieties. Egyptian Journal of Chemistry, 0(0), 0–8. https://doi.org/10.21608/ejchem.2018.3941.1345
  • Anbazhakan, K., Sadasivam, K., Praveena, R., & Dhandapani, M. (2019). Target prediction and antioxidant analysis on isoflavones of demethyltexasin: A DFT study. Journal of Molecular Modeling, 25(6), 169. https://doi.org/10.1007/s00894-019-4045-0
  • Ancy, I., Sivanandam, M., & Kumaradhas, P. (2020). Possibility of HIV-1 protease inhibitors-clinical trial drugs as repurposed drugs for SARS-CoV-2 main protease: A molecular docking, molecular dynamics and binding free energy simulation study. Journal of Biomolecular Structure and Dynamics, 1–8. https://doi.org/10.1080/07391102.2020.1786459
  • Badavath, V. N., Kumar, A., Samanta, P. K., Maji, S., Das, A., Blum, G., Jha, A., & Sen, A. (2020). Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): A molecular docking, molecular dynamics and structure-activity relationship studies. Journal of Biomolecular Structure and Dynamics, 1–19. https://dx.doi.org/10.1080/07391102.2020.1845800
  • Beck, B. R., Shin, B., Choi, Y., Park, S., & Kang, K. (2020). Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Computational and Structural Biotechnology Journal, 18, 784–790. https://doi.org/10.1016/j.csbj.2020.03.025
  • Bhardwaj, V. K., & Purohit, R. (2020). Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: Rational drug design and validation. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2020.1772109
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Bourgonje, A. R., Abdulle, A. E., Timens, W., Hillebrands, J.-L., Navis, G. J., Gordijn, S. J., Bolling, M. C., Dijkstra, G., Voors, A. A., Osterhaus, A. D., van der Voort, P. H., Mulder, D. J., & van Goor, H. (2020). Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of Pathology, 251(3), 228–248. https://doi.org/10.1002/path.5471
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. The Lancet, 395 (10223), 507–513. https://doi.org/10.1016/S0140-6736(20)30211-7
  • Cheng, Z. J., & Shan, J. (2020). 2019 Novel coronavirus: Where we are and what we know. Infection, 48(2), 155–163. https://doi.org/10.1007/s15010-020-01401-y
  • Cocco, M. T., Congiu, C., & Onnis, V. (2000). Synthesis and antitumour activity of 4-hydroxy-2-pyridone derivatives. European Journal of Medicinal Chemistry, 35 (5), 545–552. https://doi.org/10.1016/S0223-5234(00)00149-5
  • Coperchini, F., Chiovato, L., Croce, L., Magri, F., & Rotondi, M. (2020). The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine & Growth Factor Reviews, 53, 25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.
  • Daina, A., & Zoete, V. (2016). A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem, 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B. J., & Jiang, S. (2009). The spike protein of SARS-CoV—A target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gentile, D., Fuochi, V., Rescifina, A., & Furneri, P. M. (2020). New Anti SARS-Cov-2 Targets for Quinoline Derivatives Chloroquine and Hydroxychloroquine. International Journal of Molecular Sciences, 21(16), 5856. https://doi.org/10.3390/ijms21165856
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020a). Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2020.1841680
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020b). Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1858164
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2020c). Potential therapeutic use of corticosteroids as SARS CoV-2 main protease inhibitors: A computational study. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1835728
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. Journal of Molecular Structure, 1229, 129489. https://doi.org/10.1016/j.molstruc.2020.129489
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hoque, M. J., Ahsan, A., & Hossain, M. B. (2018). Molecular Docking, Pharmacokinetic, and DFT Calculation of Naproxen and its Degradants. Biomedical Journal of Scientific & TechnicalResearch, 9(5), 7360–7365. https://doi.org/10.26717/BJSTR.2018.09.001852
  • Huang, J., & MacKerell, A. D. (2013). CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). Identifying novel oncogenes: A machine learning approach. Interdisciplinary Sciences, Computational Life Sciences, 5(4), 241–246. https://doi.org/10.1007/s12539-013-0151-3
  • Kumari, P., Pratap Singh, S., & Som, A. (2021). Insights into the dynamics of cyclic diguanosine monophosphate I riboswitch using molecular dynamics simulation. Indian Journal of Biochemistry and Biophysics (IJBB), 58(3), 208–218.
  • Kyriakidis, N. C., López-Cortés, A., González, E. V., Grimaldos, A. B., & Prado, E. O. (2021). SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. npj Vaccines, 6(1), 28. https://doi.org/10.1038/s41541-021-00292-w
  • Lagos, C. F., Caballero, J., Gonzalez-Nilo, F. D., David Pessoa-Mahana, C., & PerezAcle, T. (2008). Docking and quantitative structure-activity relationship studies for the bisphenylbenzimidazole family of non-nucleoside inhibitors of HIV-1 reverse transcriptase. Chemical Biology & Drug Design, 72(5), 360–369. https://doi.org/10.1111/j.1747-0285.2008.00716.x
  • Mishra, R., Chaurasia, H., Singh, V. K., Naaz, F., & Singh, R. K. (2021). Molecular modeling, QSAR analysis and antimicrobial properties of Schiff base derivatives of isatin. Journal of Molecular Structure, 1243, 130763. https://doi.org/10.1016/j.molstruc.2021.130763
  • Muegge, I., & Martin, Y. C. (1999). A general and fast scoring function for protein-ligand interactions: A simplified potential approach. Journal of Medicinal Chemistry, 42(5), 791–804. https://doi.org/10.1021/jm980536j
  • Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C., & Parmar, V. S. (2001). Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones. Bioorganic & Medicinal Chemistry, 9(2), 337–345. https://doi.org/10.1016/S0968-0896(00)00249-2
  • Naaz, F., Srivastava, R., Singh, A., Singh, N., Verma, R., Singh, V. K., & Singh, R. K. (2018). Molecular modeling, synthesis, antibacterial and cytotoxicity evaluation of sulfonamide derivatives of benzimidazole, indazole, benzothiazole and thiazole. Bioorganic & Medicinal Chemistry, 26(12), 3414–3428. https://doi.org/10.1016/j.bmc.2018.05.015
  • Narender, T., Shweta Tanvir, K., Srinivasa Rao, M., Srivastava, K., & Puri, S. K. (2005). Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 15, 2453–2455. https://doi.org/10.1016/j.bmcl.2005.03.081
  • Ottaviani, G., Gosling, D. J., Patissier, C., Rodde, S., Zhou, L., & Faller, B. (2010). What is modulating solubility in simulated intestinal fluids? European Journal of Pharmaceutical Sciences : official Journal of the European Federation for Pharmaceutical Sciences, 41(3-4), 452–457. https://doi.org/10.1016/j.ejps.2010.07.012
  • Pal, M., Berhanu, G., Desalegn, C., & Kandi, V. (2020). Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 12(3), e7423. https://doi.org/10.7759/cureus.7423
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Potts, R. O., & Guy, R. H. (1992). Predicting Skin Permeability. Pharmaceutical Research, 9(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: A molecular dynamics simulation insight. Journal of Biomolecular Structure & Dynamics, 32(7), 1033–1046. https://doi.org/10.1080/07391102.2013.803264
  • Ritchie, T. J., Macdonald, S. J., Peace, S., Pickett, S. D., & Luscombe, C. N. (2013). Increasing small molecule drug developability in sub-optimal chemical space. MedChemComm, 4(4), 673–680. https://doi.org/10.1039/c3md00003f
  • Rose, P. W., Bi, C., Bluhm, W. F., Christie, C. H., Dimitropoulos, D., Dutta, S., Green, R. K., Goodsell, D. S., Prlic, A., Quesada, M., Quinn, G. B., Ramos, A. G., Westbrook, J. D., Young, J., Zardecki, C., Berman, H. M., & Bourne, P. E. (2013). The RCSB Protein Data Bank: New resources for research and education. Nucleic Acids Research, 41(Database issue), D475–D482. https://doi.org/10.1093/nar/gks1200
  • Schuler, V., Lüscher, C., Blanchet, C., Klix, N., Sansig, G., Klebs, K., Schmutz, M., Heid, J., Gentry, C., Urban, L., Fox, A., Spooren, W., Jaton, A.-L., Vigouret, J.-M., Pozza, M., Kelly, P. H., Mosbacher, J., Froestl, W., Käslin, E., … Bettler, B. (2001). Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABAB responses in mice lacking GABAB (1). Neuron, 31(1), 47–58. https://doi.org/10.1016/S0896-6273(01)00345-2
  • Sharma, J., Bhardwaj, V. K., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Sharma, P., Joshi, T., Mathpal, S., Joshi, T., Pundir, H., Chandra, S., & Tamta, S. (2020). Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2020.1842806
  • Singh, A., Yadav, M., Srivastava, R., Singh, N., Kaur, R., Gupta, S. K., & Singh, R. K. (2016). Design and anti-HIV activity of arylsulphonamides as non-nucleoside reverse transcriptase inhibitors. Medicinal Chemistry Research, 25(12), 2842–2859. https://doi.org/10.1007/s00044-016-1707-7
  • Singh, R., Bhardwaj, V., & Purohit, R. (2021). Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 39(1), 348–356. https://doi.org/10.1080/07391102.2020.1711809
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021). Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 113(1 Pt 2), 707–715. https://doi.org/10.1016/j.ygeno.2020.10.001
  • Singh, S., & Singh, J. (1993). Transdermal drug delivery by passive diffusion and iontophoresis: A review. Medicinal Research Reviews, 13(5), 569–621. https://doi.org/10.1002/med.2610130504
  • Singh, V. K., Srivastava, R., Gupta, P. S. S., Naaz, F., Chaurasia, H., Mishra, R., Rana, M. K., & Singh, R. K. (2021). Anti-HIV potential of diarylpyrimidine derivatives as non-nucleoside reverse transcriptase inhibitors: Design, synthesis, docking, TOPKAT analysis and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 39(7), 2430–2417. https://doi.org/10.1080/07391102.2020.1748111
  • Srivastava, R., Gupta, S. K., Naaz, F., Gupta, P. S. S., Yadav, M., Singh, V. K., Singh, A., Rana, M. K., Gupta, S. K., Schols, D., & Singh, R. K. (2020). Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Computational Biology and Chemistry, 89, 107400. https://doi.org/10.1016/j.compbiolchem.2020.107400
  • Srivastava, R., Gupta, S. K., Naaz, F., Singh, A., Singh, V. K., Verma, R., Singh, N., & Singh, R. K. (2018). Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues. Computational Biology and Chemistry, 76, 1–16. https://doi.org/10.1016/j.compbiolchem.2018.05.021
  • Sulpizi, M., Folkers, G., Rothlisberger, U., Carloni, P., & Scapozza, L. (2002). Applications of density functional theory‐based methods in medicinal chemistry. Quantitative Structure-Activity Relationships, 21(2), 173–181. https://doi.org/10.1002/1521-3838(200207)21:2<173::AID-QSAR173>3.0.CO;2-B
  • Tandon, H., Chakraborty, T., & Suhag, V. (2019). A brief review on importance of DFT in drug design. Research in Medical and Engineering Studies, 39, 46. https://doi.org/10.31031/RMES.2019.07.00068
  • Triggle, C. R., Bansal, D., Ding, H., Islam, M. M., Farag, E. A. B. A., Hadi, H. A., & Sultan, A. A. (2021). A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 12, 631139. https://doi.org/10.3389/fimmu.2021.631139
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Van Aalten, D. M., Findlay, J. B., Amadei, A., & Berendsen, H. J. (1995). Essential dynamics of the cellular retinol-binding protein-evidence for ligand-induced conformational changes. Protein Engineering, 8(11), 1129–1135. https://doi.org/10.1093/protein/8.11.1129
  • Van Gunsteren, W. F., & Berendsen, H. J. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D., Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., Wang, B., Xiang, H., Cheng, Z., Xiong, Y., Zhao, Y., Li, Y., Wang, X., & Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323(11), 1061–1069. 10.1001/jama.2020.1585
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 1–18. https://doi.org/10.3389/fmolb.2017.00087
  • Zhang, J. J., Dong, X., Cao, Y. Y., Yuan, Y. D., Yang, Y. B., Yan, Y. Q., Akdis, C. A., & Gao, Y. D. (2020). Clinical characteristics of 140 patients infected with SARS‐CoV‐2 in Wuhan, China. Allergy, 75(7), 1730–1741. https://doi.org/10.1111/all.14238
  • Zhang, L., & Liu, Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. Journal of Medical Virology, 92(5), 479–490. https://doi.org/10.1002/jmv.25707
  • Zhao, J. P., Hu, Y., Du, R. H., Chen, Z. S., Jin, Y., Zhou, M., Zhang, J., Qu, J. M., & Cao, B. (2020). Expert consensus on the use of corticosteroid in patients with 2019-nCoV pneumonia. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese Journal of Tuberculosis and Respiratory Diseases, 43(3), 183–184. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.