168
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Tuning the structural and catalytic properties of copper(II)-based complexes containing pyridine-2,6-diimines

, ORCID Icon, , , , & ORCID Icon show all
Pages 10677-10695 | Received 23 Jan 2021, Accepted 20 Jun 2021, Published online: 26 Aug 2021

References

  • Archer, A. M., Bouwkamp, M. W., Cortez, M.-P., Lobkovsky, E., & Chirik, P. J. (2006). Arene coordination in bis-(imino) pyridine iron complexes: Identification of catalyst deactivation pathways in iron-catalyzed hydrogenation and hydrosilation. Organometallics, 25(18), 4269–4278. https://doi.org/10.1021/om060441c
  • Balamurugan, R., Palaniandavar, M., & Gopalan, R. (2001). Trigonal planar copper(I) complex: synthesis, structure, and spectra of a redox pair of novel copper(II/I) complexes of tridentate bis(benzimidazol-2'-yl) ligand framework as models for electron-transfer copper proteins . Inorganic Chemistry, 40(10), 2246–2255. https://doi.org/10.1021/ic0003372
  • Barbucci, R., Bencini, A., & Gatteschi, D. (1977). Electron spin resonance spectra and spin-Hamiltonian parameters for trigonal-bipyramidal nickel(I) and copper(II) complexes. Inorganic Chemistry, 16(8), 2117–2120. https://doi.org/10.1021/ic50174a061
  • Bart, S. C., Chłopek, K., Bill, E., Bouwkamp, M. W., Lobkovsky, E., Neese, F., Wieghardt, K., & Chirik, P. J. (2006). Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. Journal of the American Chemical Society, 128(42), 13901–13912. https://doi.org/10.1021/ja064557b
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Bertini, G., Gray, H. B., Gray, H., Valentine, J. S., Stiefel, E. I., & Stiefel, E. (2007). Biological inorganic chemistry: structure and reactivity. University Science Books.
  • Bianchini, C., Giambastiani, G., Rios, I. G., Mantovani, G., Meli, A., & Segarra, A. M. (2006). Ethylene oligomerization, homopolymerization and copolymerization by iron and cobalt catalysts with 2,6-(bis-organylimino) pyridyl ligands. Coordination Chemistry Reviews, 250(11-12), 1391–1418. https://doi.org/10.1016/j.ccr.2005.12.018
  • Bianchini, C., Lee, H. M., Meli, A., & Vizza, F. (2000). In situ high-pressure 31P {1H} NMR studies of the hydroformylation of 1-hexene by RhH (CO)(PPh3) 3. Organometallics, 19(5), 849–853. https://doi.org/10.1021/om9907627
  • Bouwkamp, M. W., Bowman, A. C., Lobkovsky, E., & Chirik, P. J. (2006). Iron-catalyzed [2pi + 2pi] cycloaddition of alpha,omega-dienes: the importance of redox-active supporting ligands. Journal of the American Chemical Society, 128(41), 13340–13341. https://doi.org/10.1021/ja064711u
  • Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., McTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P., & Williams, D. J. (1999). Iron and cobalt ethylene polymerization catalysts bearing 2, 6-bis (imino) pyridyl ligands: Synthesis, structures, and polymerization studies. Journal of the American Chemical Society, 121(38), 8728–8740. https://doi.org/10.1021/ja990449w
  • Britovsek, G. J., England, J., Spitzmesser, S. K., White, A. J., & Williams, D. J. (2005). Synthesis of iron(II), manganese(II) cobalt(II) and ruthenium(II) complexes containing tridentate nitrogen ligands and their application in the catalytic oxidation of alkanes. Dalton Transactions, (5), 945–955. https://doi.org/10.1039/b414813d
  • Britovsek, G. J., Gibson, V. C., Hoarau, O. D., Spitzmesser, S. K., White, A. J., & Williams, D. J. (2003). Iron and cobalt ethylene polymerization catalysts: Variations on the central donor. Inorganic Chemistry, 42(11), 3454–3465. https://doi.org/10.1021/ic034040q
  • Calais, J. L. (1993). Density‐functional theory of atoms and molecules. R. G. Parr & W. Yang (Eds.), Oxford University Press.
  • Çetinkaya, B., Çetinkaya, E., Brookhart, M., & White, P. S. (1999). Ruthenium(II) complexes with 2, 6-pyridyl-diimine ligands: Synthesis, characterization and catalytic activity in epoxidation reactions. Journal of Molecular Catalysis A: Chemical, 142(2), 101–112. https://doi.org/10.1016/S1381-1169(98)00285-4
  • Chandra, S., & Gupta, L. K. (2005a). Spectroscopic approach in characterization of chromium(III), manganese(II), iron(III) and copper(II) complexes with a nitrogen donor tetradentate, 14-membered azamacrocyclic ligand. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 61(9), 2139–2144. https://doi.org/10.1016/j.saa.2004.06.060
  • Chandra, S., & Gupta, L. K. (2005b). Spectroscopic evaluation of manganese(II) complexes derived from semicarbazones and thiosemicarbazones. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 61(11-12), 2549–2554. https://doi.org/10.1016/j.saa.2004.08.028
  • Chen, Y., Chen, R., Qian, C., Dong, X., & Sun, J. (2003). Halogen-substituted 2, 6-bis (imino) pyridyl iron and cobalt complexes: Highly active catalysts for polymerization and oligomerization of ethylene. Organometallics, 22(21), 4312–4321. https://doi.org/10.1021/om0302894
  • Cutler, A. R., Alleyne, C. S., & Dolphin, D. (1985). Facile template synthesis of nickel(II) complexes of dibenzotetraaza [14] annulenes. Inorganic Chemistry, 24(14), 2276–2281. https://doi.org/10.1021/ic00208a030
  • Deverall, B. J. (1961). Phenolase and Pectic Enzyme Activity in the Chocolate Spot Disease of Beans. Nature, 189(4761), 311–311. https://doi.org/10.1038/189311a0
  • Eggleston, D. S., & Jackels, S. C. (1980). Tetrasubstituted [14]-1, 3, 8, 10-tetraeneN4 macrocyclic complexes: Synthesis, organic precursor, and template reaction mechanism. Inorganic Chemistry, 19(6), 1593–1599. https://doi.org/10.1021/ic50208a031
  • El-Metwally, N. M., Gabr, I. M., El-Asmy, A. A., & Abou-Hussen, A. A. (2006). Spectral, magnetic, electrical and thermal studies on malonyl bis (thiosemicarbazide) complexes. Transition Metal Chemistry, 31(1), 71–78. https://doi.org/10.1007/s11243-005-6347-6
  • El-Shazly, M., El-Dissowky, A., Salem, T., & Osman, M. (1980). Synthesis and electron spin resonance studies of copper(II) complexes with acid amide derivatives of 2-amino and 2, 6-diaminopyridine. Inorganica Chimica Acta, 40, 1–6. https://doi.org/10.1016/S0020-1693(00)91973-X
  • Fidone, I., & Stevens, K. (1959). The g-value of S-state ions. Proceedings of the Physical Society, 73(1), 116–117. https://doi.org/10.1088/0370-1328/73/1/419
  • Flanagan, S., Dong, J., Haller, K., Wang, S., Scheidt, W. R., Scott, R. A., Webb, T. R., Stanbury, D. M., & Wilson, L. J. (1997). CuI/II (bite)]+/2+(bite = biphenyldiimino dithioether): An example of fully-gated electron transfer and its biological relevance. Journal of the American Chemical Society, 119(38), 8857–8868. Macrocyclic [ https://doi.org/10.1021/ja9644034
  • Frisch, M., & Clemente, F. (2009). Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe.
  • Gang, Z., & Yuan, C. (1994). Synthesis and physicochemical studies on S-methyl-β-N-(ferrocenyl) methylenedithiocarbazate and its rare earth complexes. Transition Metal Chemistry, 19(2), 218–220. https://doi.org/10.1007/BF00161894
  • Gao, R., Wang, K., Li, Y., Wang, F., Sun, W.-H., Redshaw, C., & Bochmann, M. (2009). 2-Benzoxazolyl-6-(1-(arylimino) ethyl) pyridyl cobalt(II) chlorides: A temperature switch catalyst in oligomerization and polymerization of ethylene. Journal of Molecular Catalysis A: Chemical, 309(1-2), 166–171. https://doi.org/10.1016/j.molcata.2009.05.021
  • Geary, W. J. (1971). The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coordination Chemistry Reviews, 7(1), 81–122. https://doi.org/10.1016/S0010-8545(00)80009-0
  • Gibson, V. C., Redshaw, C., & Solan, G. A. (2007). Bis(imino)pyridines: surprisingly reactive ligands and a gateway to new families of catalysts. Chemical Reviews, 107(5), 1745–1776. https://doi.org/10.1021/cr068437y
  • Granata, A., Monzani, E., & Casella, L. (2004). Mechanistic insight into the catechol oxidase activity by a biomimetic dinuclear copper complex. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 9(7), 903–913. https://doi.org/10.1007/s00775-004-0595-3
  • Hathaway, B., & Billing, D. (1970). The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coordination Chemistry Reviews, 5(2), 143–207. https://doi.org/10.1016/S0010-8545(00)80135-6
  • Hathaway, B., Dudley, R., & Nicholls, P. (1969). Electronic properties and stereochemistry of dipotassium barium hexanitrocuprate(II). Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1845–1848. https://doi.org/10.1039/j19690001845
  • Ilhan, S., Temel, H., Yilmaz, I., & Sekerci, M. (2007). Synthesis, structural characterization and electrochemical studies of new macrocyclic Schiff base containing pyridine head and its metal complexes. Journal of Organometallic Chemistry, 692(18), 3855–3865. https://doi.org/10.1016/j.jorganchem.2007.05.031
  • Ismail, K. Z. (1997). Synthesis and physicochemical studies of metal complexes of ferrocene Schiff base derivatives. Transition Metal Chemistry, 22(6), 565–569. https://doi.org/10.1023/A:1018556523076
  • Ittel, S. D., Johnson, L. K., & Brookhart, M. (2000). Late-metal catalysts for ethylene homo- and copolymerization. Chemical Reviews, 100(4), 1169–1204. https://doi.org/10.1021/cr9804644
  • Kaizer, J., Csonka, R., & Speier, G. (2002). TEMPO-initiated oxidation of 2-aminophenol to 2-aminophenoxazin-3-one. Journal of Molecular Catalysis A: Chemical, 180(1-2), 91–96. https://doi.org/10.1016/S1381-1169(01)00443-5
  • Kano, K., Glass, R. S., & Wilson, G. S. (1993). Chemical and electrochemical investigation of redox-associated conformational changes in the bis (1, 4, 7-trithiacyclononane) copper(II/I) system and X-ray structure of the copper (I) complex. Journal of the American Chemical Society, 115(2), 592–600. https://doi.org/10.1021/ja00055a031
  • Karlin, K. D., Dahlstrom, P. L., Hyde, J. R., & Zubieta, J. (1980). Structural comparison of Cu I and Cu II complexes displaying analogous N 2 S 2 co-ordination; X-ray analysis of tetraco-ordinate [Cu(pma)] BPh 4 and pentaco-ordinate [Cu(pma) SO 4][pma [double bond, length as m-dash] 2-pyridylmethylbis-(2-ethylthioethyl) amine. Journal of the Chemical Society, Chemical Communications, (19), 906–908. https://doi.org/10.1039/C39800000906
  • Knijnenburg, Q., Hetterscheid, D., Kooistra, T. M., & Budzelaar, P. H. (2004). The electronic structure of (diiminopyridine) cobalt(I) complexes. European Journal of Inorganic Chemistry, 2004(6), 1204–1211. https://doi.org/10.1002/ejic.200300569
  • Kuchiyama, Y., Kobayashi, N., & Takagi, H. D. (1998). Structural study and electron exchange kinetics of the bis (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) copper(II)/(I) couple in acetonitrile. Inorganica Chimica Acta, 277(1), 31–36. https://doi.org/10.1016/S0020-1693(97)06092-1
  • Kupán, Á., Kaizer, J., Speier, G., Giorgi, M., Réglier, M., & Pollreisz, F. (2009). Molecular structure and catechol oxidase activity of a new copper(I) complex with sterically crowded monodentate N-donor ligand. Journal of Inorganic Biochemistry, 103(3), 389–395. https://doi.org/10.1016/j.jinorgbio.2008.11.015
  • Langford, C. H., & Gray, H. B. (1966). Ligand substitution processes. WA Benjamin, Inc.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lever, A. P. (1984). Inorganic electronic spectroscopy. Studies in Physical and Theoretical Chemistry, 33
  • Lindoy, L. F. (1990). The chemistry of macrocyclic ligand complexes. Cambridge University Press.
  • Lopez-Garriga, J. J., Babcock, G. T., & Harrison, J. F. (1986). Factors influencing the C:N stretching frequency in neutral and protonated Schiff's bases. Journal of the American Chemical Society, 108(23), 7241–7251. https://doi.org/10.1021/ja00283a019
  • Martin, M. J., Endicott, J. F., Ochrymowycz, L., & Rorabacher, D. (1987). Structure-reactivity relationships in copper(II)/copper(I) electron-transfer kinetics: Evaluation of self-exchange rate constants for copper polythia ether complexes. Inorganic Chemistry, 26(18), 3012–3022. https://doi.org/10.1021/ic00265a019
  • Meagher, N. E., Juntunen, K. L., Salhi, C. A., Ochrymowycz, L., & Rorabacher, D. (1992). Gated electron-transfer behavior in copper(II/I) systems. Comparison of the kinetics for homogeneous cross reactions, NMR self-exchange relaxation, and electrochemical data for a copper macrocyclic tetrathioether complex in aqueous solution. Journal of the American Chemical Society, 114(26), 10411–10420. https://doi.org/10.1021/ja00052a042
  • Mohamed, G. G. (2006). Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 64(1), 188–195. https://doi.org/10.1016/j.saa.2005.05.044
  • Nakamoto, K. (1986). Infrared and Raman Spectra of Inorganic and Coordination Compounds. John Willey and Sons. Inc.
  • Nivorozhkin, A. L., Toftlund, H., Jørgensen, P. L., & Nivorozhkin, L. E. (1996). Structural variations in nickel(II) and copper(II) MN4 Schiff-base complexes with deprotonated tetradentate N,N-bis(5-aminopyrazol-4-ylmethylene) polymethylene diamine ligands. Journal of the Chemical Society, Dalton Transactions, (7), 1215–1221. https://doi.org/10.1039/DT9960001215
  • Onawumi, O., Faboya, O., Odunola, O., Prasad, T., & Rajasekharan, M. (2008). Synthesis, structure and spectral studies on mixed ligand copper(II) complexes of diimines and acetylacetonate. Polyhedron, 27(1), 113–117. https://doi.org/10.1016/j.poly.2007.08.041
  • Parr, R., & Yang, W. (1989). Density-functional theory of atoms and molecules., vol. 16: Oxford University Press.
  • Patel, R., Singh, N., Patel, D., & Gundla, V. (2007). Synthesis, characterization and superoxide dismutase studies of square pyramidal copper(II) complexes with bi and tridentate polyamine ligands.
  • Paulino, I. S., & Schuchardt, U. (2004). Ethylene polymerization using iron catalysts heterogenized in MCM-41. Catalysis Communications, 5(1), 5–7. https://doi.org/10.1016/j.catcom.2003.10.011
  • Radecka-Paryzek, W., Patroniak-Krzyminiewska, V., & Litkowska, H. (1998). The template synthesis and characterization of the yttrium and lanthanide complexes of new 19-membered pentadentate azaoxa macrocycle. Polyhedron, 17(9), 1477–1480. https://doi.org/10.1016/S0277-5387(97)00409-9
  • Ramadan, A. E.-M M. (2012a). Macrocyclic nickel(II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding. Journal of Molecular Structure, 1015, 56–66. https://doi.org/10.1016/j.molstruc.2012.01.048
  • Ramadan, A. E.-M M. (2012b). Syntheses and characterization of new tetraazamacrocyclic copper(II) complexes as a dual functional mimic enzyme (catalase and superoxide dismutase). Journal of Coordination Chemistry, 65(8), 1417–1433. https://doi.org/10.1080/00958972.2012.673719
  • Ramadan, A. E.-M M., & El-Emary, T. I. (1998). New tetraaza macrocyclic complexes of palladium(II) and platinum(II) formed by the self-condensation of 5-amino-3-methyl-1-phenylpyrazole-4-carbaldehyde in the presence of metal ions. α-Amino ether and carbinolamine derivatives of the macrocyclic Schiff base metal complex. Transition Metal Chemistry, 23(4), 491–495.
  • Ramadan, A. E.-M M., Ibrahim, M. M., & El-Mehasseb, I. M. (2012). New mononuclear copper(I) and copper(II) complexes containing N4 donors: crystal structure and catechol oxidase biomimetic catalytic activity. Journal of Coordination Chemistry, 65(13), 2256–2279. https://doi.org/10.1080/00958972.2012.690513
  • Ramadan, A. E.-M M., Ibrahim, M. M., & Shaban, S. Y. (2011). Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3H)-quinazolin-4-one. Journal of Molecular Structure, 1006(1-3), 348–355. https://doi.org/10.1016/j.molstruc.2011.09.031
  • Ramadan, A. E.-M M., Shaban, S. Y., Ibrahim, M. M., Adel, A.-H., Sallam, S. A., Al-Harbi, S. A., & Omar, W. (2020a). Synthesis and spectroscopic characterization of ternary copper(II) complexes containing nitrogen and oxygen donors as functional mimics of catechol oxidase and phenoxazinone synthase. New Journal of Chemistry, 44(16), 6331–6345. https://doi.org/10.1039/C9NJ06131B
  • Ramadan, A. E. M. M., Shaban, S. Y., Ibrahim, M. M., El-Hendawy, M. M., Eissa, H., & Al-Harbi, S. A. (2020c). Copper(II) complexes containing pyridine‐based and phenolate‐based systems: Synthesis, characterization, DFT study, biomimetic catalytic activity of catechol oxidase and phenoxazinone synthase. Journal of the Chinese Chemical Society, 67(1), 135–151. https://doi.org/10.1002/jccs.201900113
  • Ramadan, A., Shaban, S., Ibrahim, M., El-Shami, F., & Al-Harbi, S. (2019). Ternary complexes containing Copper(II), L-Valinate and α,ά-bipyridyl or 1, 10-phenanthroline: Synthesis, characterization, ligand substitution and oxidase biomimetic catalytic activity studies. Journal of Molecular Structure, 1189, 360–376. https://doi.org/10.1016/j.molstruc.2019.04.003
  • Ramadan, A. E.-M. M., Shaban, S. Y., Ibrahim, M. M., Sallam, S. A., El-Shami, F. I., & Al-Juaid, S. (2020b). Metformin-based copper(II) complexes: Synthesis, structural characterization and mimicking activity of catechol oxidase and phenoxazinone synthase. Journal of Materials Science, 55(15), 6457–6481. https://doi.org/10.1007/s10853-019-04165-5
  • Robandt, P. V., Schroeder, R. R., & Rorabacher, D. (1993). Cyclic voltammetric characterization of rate constants for conformational change in an electron-transfer square scheme involving a copper(II)/(I) macrocyclic tetrathiaether complex. Inorganic Chemistry, 32(18), 3957–3963. https://doi.org/10.1021/ic00070a031
  • Rompel, A., Fischer, H., Meiwes, D., Büldt-Karentzopoulos, K., Dillinger, R., Tuczek, F., Witzel, H., & Krebs, B. (1999). Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: Evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 4(1), 56–63. https://doi.org/10.1007/s007750050289
  • Sacconi, L. (1968). Transition Metal Chemistry., ed. RL Carlin Marcel Dekker. Inc. 4, 199.
  • Selmeczi, K., Réglier, M., Giorgi, M., & Speier, G. (2003). Catechol oxidase activity of dicopper complexes with N-donor ligands. Coordination Chemistry Reviews, 245(1-2), 191–201. https://doi.org/10.1016/j.cct.2003.08.002
  • Sengupta, S., Naath Mongal, B., Das, S., Panda, T. K., Mandal, T. K., Fleck, M., Chattopadhyay, S. K., & Naskar, S. (2018). Mn(III) and Cu(II) complexes of 1-((3-(dimethylamino) propylimino) methyl) naphthalen-2-ol): Synthesis, characterization, catecholase and phenoxazinone synthase activity and DFT-TDDFT study. Journal of Coordination Chemistry, 71(8), 1214–1233. https://doi.org/10.1080/00958972.2018.1453065
  • Shaban, S. Y., Heinemann, F. W., & van Eldik, R. (2009). A new trigonal‐bipyramidal [CuII (pytBuN3) Cl2] complex: Synthesis, structure and ligand substitution behaviour. Wiley Online Library.
  • Shaban, S. Y., Ramadan, A. M., Ibrahim, M. M., Elshami, F. I., & van Eldik, R. (2019). Square planar versus square pyramidal copper(II) complexes containing N3O moiety: Synthesis, structural characterization, kinetic and catalytic mimicking activity. Inorganica Chimica Acta, 486, 608–616. https://doi.org/10.1016/j.ica.2018.11.024
  • Shaban, S. Y., Ramadan, A. M., Ibrahim, M. M., Mohamed, M. A., & van Eldik, R. (2015). Spectroscopic, thermodynamic, kinetic studies and oxidase/antioxidant biomimetic catalytic activities of tris (3, 5-dimethylpyrazolyl) borate Cu(II) complexes. Dalton Transactions, 44(31), 14110–14121. https://doi.org/10.1039/C5DT01817J
  • Shaban, S., Ramadan, A. M., & Van Eldik, R. (2012). Structural and catalytic aspects of copper(II) complexes containing 2, 6-bis (imino) pyridyl ligands. Journal of Coordination Chemistry, 65(14), 2415–2431. https://doi.org/10.1080/00958972.2012.695017
  • Silverstein, R. (1981). GC Bassler and TC Morrill, Sptrometric Identification of Organic Compounds. Wiley.
  • Small, B. L., Brookhart, M., & Bennett, A. M. (1998). Highly active iron and cobalt catalysts for the polymerization of ethylene. Journal of the American Chemical Society, 120(16), 4049–4050. https://doi.org/10.1021/ja9802100
  • Solomon, E. I., Baldwin, M. J., & Lowery, M. D. (1992). Electronic structures of active sites in copper proteins: Contributions to reactivity. Chemical Reviews, 92(4), 521–542. https://doi.org/10.1021/cr00012a003
  • Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper Oxidases and Oxygenases. Chemical Reviews, 96(7), 2563–2605. https://doi.org/10.1021/cr950046o
  • Temel, H., Çakır, Ü., & İbrahim Uğraş, H. (2004). Synthesis and characterization of a novel oxovanadium(IV) complex and conductometric studies with N,N′‐bis (salicylidene)‐1, 2‐bis‐(p‐aminophenoxy) ethane. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 34(4), 819–831. https://doi.org/10.1081/SIM-120035960
  • Thompson, M. C., & Busch, D. H. (1964). Reactions of coordinated ligands. IX. Utilization of the template hypothesis to synthesize macrocyclic ligands in situ. Journal of the American Chemical Society, 86(18), 3651–3656. https://doi.org/10.1021/ja01072a012
  • Thorn, A., & Sheldrick, G. M. (2013). Extending molecular-replacement solutions with SHELXE. Acta Crystallographica. Section D, Biological Crystallography, 69(Pt 11), 2251–2256. https://doi.org/10.1107/S0907444913027534
  • Valentine, J. S., Foote, C. S., Greenberg, A., & Liebman, J. F. (2012). Active oxygen in biochemistry (Vol. 3). Springer Science & Business Media.
  • Van der Boom, M. E., & Milstein, D. (2003). Cyclometalated phosphine-based pincer complexes: Mechanistic insight in catalysis, coordination, and bond activation. Chemical Reviews, 103(5), 1759–1792. https://doi.org/10.1021/cr960118r
  • Vidyaratne, I., Gambarotta, S., Korobkov, I., & Budzelaar, P. H. (2005). Dinitrogen partial reduction by formally zero- and divalent vanadium complexes supported by the bis-iminopyridine system . Inorganic Chemistry, 44(5), 1187–1189. https://doi.org/10.1021/ic048358+
  • Welsh, W., Reynolds, G., & Henry, P. (1977). Synthesis of hydroxy-substituted macrocyclic ligand complexes of cobalt and isolation of a macrocycle precursor. Inorganic Chemistry, 16(10), 2558–2561. https://doi.org/10.1021/ic50176a028
  • West, D. X., Huffman, D. L., Saleda, J. S., & Liberta, A. E. (1991). Chemical and antifungal properties of the copper(II) complexes of 2-formylpyridine 4 N-methyl-, 4 N-dimethyl, 4 N-diethyl and 4 N-dipropylthiosemicarbazones. Transition Metal Chemistry, 16(6), 565–570. https://doi.org/10.1007/BF01024187
  • West, D. X., Nassar, A. A., El-Saied, F. A., & Ayad, M. I. (1998). Nickel(II) complexes of 2-aminoacetophenone N (4)-substituted thiosemicarbazones. Transition Metal Chemistry, 23(4), 423–427. https://doi.org/10.1023/A:1006990024939
  • West, D. X., Thientanavanich, I., & Liberta, A. E. (1995). Copper(II) complexes of 6-methyl-2-acetylpyridine N (4)-substituted thiosemicarbazones. Transition Metal Chemistry, 20(3), 303–308.
  • Zaki, A., El-Sheikh, M., Evans, J., & El-Safty, S. (2000). Characteristic mechanisms of the homogeneous and heterogeneous oxidation of aromatic amines with transition metal oxalate complexes. Polyhedron, 19(11), 1317–1328. https://doi.org/10.1016/S0277-5387(00)00401-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.