216
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Spectroscopic, quantum chemical, molecular docking and molecular dynamics investigations of hydroxylic indole-3-pyruvic acid: a potent candidate for nonlinear optical applications and Alzheimer’s drug

ORCID Icon, , , , &
Pages 10651-10664 | Received 03 Mar 2021, Accepted 19 Jun 2021, Published online: 15 Jul 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmad, A., Sakr, W. A., & Rahman, K. M. W. (2012). Novel targets for detection of cancer and their modulation by chemopreventive natural compounds. Frontiers in Bioscience, E4(1), 410–425. https://doi.org/10.2741/388
  • Anitha, K., Balachandran, V., Narayana, B., & Raja, B. (2017). Molecular orbital analysis, vibrational spectroscopic investigation, static and dynamic NLO responses of Ethyl 6-nitro-1H-indole-3-carboxylate. Materials Research Innovations, 22, 333–342. https://doi.org/10.1080/14328917.2017.1323989
  • Asath, R. M., Rekha, T. N., Premkumar, S., Mathavan, T., & Benial, A. M. F. (2016). Vibrational, spectroscopic, molecular docking and density functional theory studies on N-(5-aminopyridin-2-yl)acetamide. Journal of Molecular Structure, 1125, 633–642. https://doi.org/10.1016/j.molstruc.2016.07.064
  • Azam, F., Alabdullah, N. H., Ehmedat, H. M., Abulifa, A. R., Taban, I., & Upadhyayula, S. (2018). NSAIDs as potential treatment option for preventing amyloid β toxicity in Alzheimer’s disease: An investigation by docking, molecular dynamics, and DFT studies. Journal of Biomolecular Structure and Dynamics, 36(8), 2099–2117. https://doi.org/10.1080/07391102.2017.1338164
  • Becke, A. D. (1997). Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. The Journal of Chemical Physics, 107(20), 8554–8560. https://doi.org/10.1063/1.475007
  • Bencivenni, L., Margonelli, A., Mariani, A., Pieretti, A., & Nunziante Cesaro, S. (2012). Combined FTIR matrix isolation and density functional studies of indole-3-pyruvic acid molecule. spectroscopic evidence of gas-phase tautomerism. ISRN Physical Chemistry, 2012, 1–11. https://doi.org/10.5402/2012/243741
  • Bendheim, P. E., Poeggeler, B., Neria, E., Ziv, V., Pappolla, M. A., & Chain, D. G. (2002). Development of indole-3-propionic acid (OXIGONTM) for Alzheimer’s disease. Journal of Molecular Neuroscience, 19(1–2), 213–217. https://doi.org/10.1007/s12031-002-0036-0
  • Benzon, K. B., Mary, Y. S., Varghese, H. T., Panicker, C. Y., Armaković, S., Armaković, S. J., Pradhan, K., Nanda, A. K., & Van Alsenoy, C. (2017). Spectroscopic, DFT, molecular dynamics and molecular docking study of 1-butyl-2-(4-hydroxyphenyl)-4,5-dimethyl-imidazole 3-oxide. Journal of Molecular Structure, 1134, 330–344. https://doi.org/10.1016/j.molstruc.2016.12.100
  • Billes, F., Podea, P. V., Mohammed-Ziegler, I., Toşa, M., Mikosch, H., & Irimie, D. F. (2009). Formyl-and acetylindols: Vibrational spectroscopy of an expectably pharmacologically active compound family. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 74, 1031–1045. https://doi.org/10.1016/j.saa.2009.08.044
  • Bodur, E., & Cokugras, A. N. (2005). The effects of indole-3-acetic acid on human and horse serum butyrylcholinesterase. Chemico-Biological Interactions, 157–158, 375–378. https://doi.org/10.1016/j.cbi.2005.10.061
  • Černý, J., & Hobza, P. (2007). Non-covalent interactions in biomacromolecules. Physical Chemistry Chemical Physics, 9(39), 5291. https://doi.org/10.1039/b704781a
  • Chang, K.-H., Lin, C.-H., Chen, H.-C., Huang, H.-Y., Chen, S.-L., Lin, T.-H., Ramesh, C., Huang, C.-C., Fung, H.-C., Wu, Y.-R., Huang, H.-J., Lee-Chen, G.-J., Hsieh-Li, H. M., & Yao, C.-F. (2017). The potential of indole/indolylquinoline compounds in tau misfolding reduction by enhancement of HSPB1. CNS Neuroscience & Therapeutics, 23(1), 45–56. https://doi.org/10.1111/cns.12592
  • DeLano, W. L. (2014). References. Hypertension Research, 37(4), 362–387. https://doi.org/10.1038/hr.2014.17
  • Dennington, R., Keith, T., & Millam, J. (2009). GaussView, Version 5. Semichem Inc.
  • Dileep, K. V., Remya, C., Tintu, I., & Sadasivan, C. (2013). Inhibition, ADME and structure based modification of IAA and IBA against acetylcholinesterase: An attempt towards new drug development for Alzheimer’s disease. Frontiers in Life Science, 7(3–4), 164–173. https://doi.org/10.1080/21553769.2013.876452
  • Djeradi, H., Rahmouni, A., & Cheriti, A. (2014). Antioxidant activity of flavonoids: A QSAR modeling using Fukui indices descriptors. Journal of Molecular Modeling, 20(10), 2476. https://doi.org/10.1007/s00894-014-2476-1
  • Dougherty, D. A. (2007). Cation-pi interactions involving aromatic amino acids. The Journal of Nutrition, 137(6 Suppl 1), 1504S–1508S. https://doi.org/10.1093/jn/137.6.1504S
  • El-Sayed, M. T., Hamdy, N. A., Osman, D. A., & Ahmed, K. M. (2015). Indoles as anticancer agents. Advances in Modern Oncology Research, 1(1), 20. https://doi.org/10.18282/amor.v1.i1.12
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules2007
  • Fleming, I. (2009). Molecular orbitals and organic chemical reactions, Student edition. John Wiley & Sons. https://doi.org/10.1002/9780470684306
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2010). Gaussian09 Revision D.01; Gaussian 09 Revision C.01. Gaussian Inc.
  • Gallivan, J. P., & Dougherty, D. A. (1999). Cation-pi interactions in structural biology. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9459–9464. https://doi.org/10.1073/pnas.96.17.9459
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., de Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Jamróz, M. H. (2013). Vibrational energy distribution analysis VEDA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 114, 220–230. https://doi.org/10.1016/j.saa.2013.05.096
  • Jeyaseelan, S. C., Premkumar, R., Kaviyarasu, K., & Franklin Benial, A. M. (2019). Spectroscopic, quantum chemical, molecular docking and in vitro anticancer activity studies on 5-Methoxyindole-3-carboxaldehyde. Journal of Molecular Structure, 1197, 134–146. https://doi.org/10.1016/j.molstruc.2019.07.042
  • Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. Chemical Reviews, 94(1), 195–242. https://doi.org/10.1021/cr00025a007
  • Karna, S. P. (2000). Electronic and nonlinear optical materials: The role of theory and modeling. Journal of Physical Chemistry A, 104(20), 4671–4673. https://doi.org/10.1021/jp001296y
  • Keck, A. S., & Finley, J. W. (2004). Cruciferous vegetables: Cancer protective mechanisms of glucosinolate hydrolysis products and selenium. Integrative Cancer Therapies, 3(1), 5–12. https://doi.org/10.1177/1534735403261831
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17(5), 315–318. https://doi.org/10.1073/pnas.17.5.315
  • Koyambo-Konzapa, S.-J., Dhaouadi, Z., & Nsangou, M. (2019). Hydration of L-glycylvaline and L-glycylvalylglycine zwitterions: Structural and vibrational studies using DFT method. Journal of Molecular Graphics & Modelling, 88, 194–202. https://doi.org/10.1016/j.jmgm.2019.01.012
  • Koyambo-Konzapa, S. J., Minguirbara, A., & Nsangou, M. (2015). Solvent effects on the structures and vibrational features of zwitterionic dipeptides: L-diglycine and L-dialanine. Journal of Molecular Modeling, 21(8), 189. https://doi.org/10.1007/s00894-015-2718-x
  • Krishnakumar, V., Balachandran, V., & Chithambarathanu, T. (2005). Density functional theory study of the FT-IR spectra of phthalimide and N-bromophthalimide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 62(4–5), 918–925. https://doi.org/10.1016/j.saa.2005.02.051
  • Kumar, K., Woo, S. M., Siu, T., Cortopassi, W. A., Duarte, F., & Paton, R. S. (2018). Cation-π interactions in protein-ligand binding: Theory and data-mining reveal different roles for lysine and arginine. Chemical Science, 9(10), 2655–2665. https://doi.org/10.1039/C7SC04905F
  • Lienard, P., Gavartin, J., Boccardi, G., & Meunier, M. (2015). Predicting drug substances autoxidation. Pharmaceutical Research, 32(1), 300–310. https://doi.org/10.1007/s11095-014-1463-7
  • Long, D. A. (2004). Infrared and Raman characteristic group frequencies. Tables and chartsGeorge Socrates John Wiley and Sons, Ltd, Chichester, Third Edition, 2001. Price £135. Journal of Raman Spectroscopy, 35(10), 905–905. https://doi.org/10.1002/jrs.1238
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mohamed Asath, R., Premkumar, R., Mathavan, T., & Milton Franklin Benial, A. (2017). Spectroscopic and molecular docking studies on N, N-di-tert-butoxycarbonyl (Boc)-2-amino pyridine: A potential bioactive agent for lung cancer treatment. Journal of Molecular Structure, 1143, 415–423. https://doi.org/10.1016/j.molstruc.2017.04.117
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Nalwa, H. S. (1997). Nonlinear optics of organic molecules and polymers. Optical Engineering, 36(9), 2622. https://doi.org/10.1117/1.601490
  • Nsangou, M., Dhaouadi, Z., Jaïdane, N., & Ben Lakhdar, Z. (2007). DFT study of proton transfer, cooperativity, and tautomerization in 2-pyridineselenol and 2-pyridinethiol ammonia and water clusters. Journal of Molecular Structure: THEOCHEM, 819(1–3), 142–152. https://doi.org/10.1016/j.theochem.2007.05.038
  • Okabe, N., & Adachi, Y. (1998). 2-Hydroxy-3-(1 H-indol-3-yl)propenoic acid. Acta Crystallographica Section C Crystal Structure Communications, 54(9), 1330–1331. https://doi.org/10.1107/S0108270198003175
  • Palafox, M. A., Chalanchi, S. M., Isasi, J., Premkumar, R., Franklin Benial, A. M., & Rastogi, V. K. (2020). Effect of bromine atom on the different tautomeric forms of microhydrated 5-bromouracil, in the DNA:RNA microhelix and in the interaction with human proteins. Journal of Biomolecular Structure & Dynamics, 38(18), 5443–5463. https://doi.org/10.1080/07391102.2019.1704878
  • Parr, R. G., & Yang, W. (1993). Density functional theory of atoms and molecules. International Journal of Quantum Chemistry, 47(1), 101.
  • Politi, V., D’Alessio, S., Di Stazio, G., & De Luca, G. (1996). Antioxidant properties of indole-3-pyruvic acid. Advances in Experimental Medicine and Biology, 398, 291–298. https://doi.org/10.1007/978-1-4613-0381-7_46
  • Politi, V., De Luca, G., Gallai, V., Puca, & Comin, M. (2000). Clinical experiences with the use of Indole-3-pyruvic acid. Advances in Experimental Medicine and Biology, 467, 227–232. https://doi.org/10.1007/978-1-4615-4709-9_29
  • Pradeepkiran, J. A., Reddy, A. P., & Reddy, P. H. (2019). Pharmacophore-based models for therapeutic drugs against phosphorylated tau in Alzheimer’s disease. Drug Discovery Today, 24(2), 616–623. https://doi.org/10.1016/j.drudis.2018.11.005
  • Prakash, B., Amuthavalli, A., Edison, D., Sivaramkumar, M. S., & Velmurugan, R. (2018). Novel indole derivatives as potential anticancer agents: Design, synthesis and biological screening. Medicinal Chemistry Research, 27(1), 321–331. https://doi.org/10.1007/s00044-017-2065-9
  • Premkumar, R., Hussain, S., Koyambo-Konzapa, S.-J., Jayram, N. D., Mathavan, T., & Benial, A. M. F. (2021). SERS and DFT investigations of methyl 4-bromo-1H- pyrrole-2-carboxylate adsorbed on silver and gold substrates: In perspective of biosensor applications. Journal of Molecular Structure, 1236, 130272. https://doi.org/10.1016/j.molstruc.2021.130272
  • Premkumar, S., Jawahar, A., Mathavan, T., Kumara Dhas, M., & Milton Franklin Benial, A. (2015). Vibrational spectroscopic and DFT calculation studies of 2-amino-7-bromo-5-oxo-[1]benzopyrano [2,3-b]pyridine-3 carbonitrile. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 138, 252–263. https://doi.org/10.1016/j.saa.2014.11.029
  • Premkumar, S., Rekha, T. N., Mohamed Asath, R., Mathavan, T., & Milton Franklin Benial, A. (2016). Vibrational spectroscopic, molecular docking and density functional theory studies on 2-acetylamino-5-bromo-6-methylpyridine. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 82, 115–125. https://doi.org/10.1016/j.ejps.2015.11.018
  • Premkumar, S., Rekha, T. N., Rajkumar, B. J. M., Asath, R. M., Jawahar, A., Mathavan, T., & Benial, A. M. F. (2015). Vibrational spectroscopic and structural investigations of 2-amino-6-methoxy-3-nitropyridine: A DFT approach. Brazilian Journal of Physics, 45(6), 621–632. https://doi.org/10.1007/s13538-015-0365-4
  • Pretsch, E., Bühlmann, P., & Badertscher, M. (2009). Structure determination of organic compounds: Tables of spectral data. Springer. https://doi.org/10.1007/978-3-540-93810-1
  • Rahman, M. U., Rehman, A. U., Liu, H., & Chen, H. F. (2020). Comparison and evaluation of force fields for intrinsically disordered proteins. Journal of Chemical Information and Modeling, 60(10), 4912–4923. https://doi.org/10.1021/acs.jcim.0c00762
  • Reed, A. E., Weinhold, F., Curtiss, L. A., & Pochatko, D. J. (1986). Natural bond orbital analysis of molecular interactions: Theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. The Journal of Chemical Physics, 84(10), 5687–5705. https://doi.org/10.1063/1.449928
  • Sajan, D., Laladhas, K. P., Hubert Joe, I., & Jayakumar, V. S. (2005). Vibrational spectra and density functional theoretical calculations on the antitumor drug, plumbagin. Journal of Raman Spectroscopy, 36(10), 1001–1011. https://doi.org/10.1002/jrs.1398
  • Sajan, D., Udaya Lakshmi, K., Erdogdu, Y., & Hubert Joe, I. (2011). Molecular structure and vibrational spectra of 2,6-bis(benzylidene) cyclohexanone: A density functional theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 78, 113–121. https://doi.org/10.1016/j.saa.2010.09.007
  • Saravanan, S., & Balachandran, V. (2014). Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, UV-Visible) study, potential energy surface scan, Fukui function analysis and HOMO-LUMO analysis of 3-tert-butyl-4-methoxyphenol by DFT methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 130, 604–620. https://doi.org/10.1016/j.saa.2014.04.058
  • Schwarz, K. (1961). Separation of enol and keto tautomers of aromatic pyruvic acids by paper chromatography. Archives of Biochemistry and Biophysics, 92(1), 168–175. https://doi.org/10.1016/0003-9861(61)90232-6
  • Senisterra, G. A., Ghanei, H., Khutoreskaya, G., Dobrovetsky, E., Edwards, A. M., Privé, G. G., & Vedadi, M. (2010). Assessing the stability of membrane proteins to detect ligand binding using differential static light scattering. Journal of Biomolecular Screening, 15(3), 314–320. https://doi.org/10.1177/1087057109357117
  • Sheena Mary, Y., Yohannan Panicker, C., Anto, P. L., Sapnakumari, M., Narayana, B., & Sarojini, B. K. (2015). Molecular structure, FT-IR, NBO, HOMO and LUMO, MEP and first order hyperpolarizability of (2E)-1-(2,4-Dichlorophenyl)-3-(3,4,5-trimethoxyphenyl) prop-2-en-1-one by HF and density functional methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 135, 81–92. https://doi.org/10.1016/j.saa.2014.06.140
  • Snehalatha, M., Ravikumar, C., Hubert Joe, I., Sekar, N., & Jayakumar, V. S. (2009). Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 72, 654–662. https://doi.org/10.1016/j.saa.2008.11.017
  • Sundaraganesan, N., Elango, G., Meganathan, C., Karthikeyan, B., & Kurt, M. (2009). Molecular structure, vibrational spectra and HOMO, LUMO analysis of 4-piperidone by density functional theory and ab initio Hartree–Fock calculations. Molecular Simulation, 35(9), 705–713. https://doi.org/10.1080/08927020902873992
  • Suresh, D. M., Amalanathan, M., Hubert Joe, I., Bena Jothy, V., & Diao, Y. P. (2014). Studies on molecular structure, vibrational spectra and molecular docking analysis of 3-Methyl-1,4-dioxo-1,4-dihydronaphthalen-2-yl 4-aminobenzoate. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 130, 591–603. https://doi.org/10.1016/j.saa.2014.03.043
  • Tarawneh, R., & Holtzman, D. M. (2012). The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harbor Perspectives in Medicine, 2(5), a006148. https://doi.org/10.1101/cshperspect.a006148
  • Tariq, S., Raza, A. R., Khalid, M., Rubab, S. L., Khan, M. U., Ali, A., Tahir, M. N., & Braga, A. A. C. (2020). Synthesis and structural analysis of novel indole derivatives by XRD, spectroscopic and DFT studies. Journal of Molecular Structure, 1203, 127438. https://doi.org/10.1016/j.molstruc.2019
  • Ünal, A., & Eren, B. (2013). FT-IR, dispersive Raman, NMR, DFT and antimicrobial activity studies on 2-(Thiophen-2-yl)-1H-benzo[d]imidazole. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 114, 129–136. https://doi.org/10.1016/j.saa.2013.05.045
  • Van Poppel, G., Verhoeven, D. T. H., Verhagen, H., & Goldbohm, R. A. (2000). Brassica vegetables and cancer prevention: Epidemiology and mechanisms. Advances in Experimental Medicine and Biology, 472, 159–168.
  • Vijaya Chamundeeswari, S. P., James Jebaseelan Samuel, E., & Sundaraganesan, N. (2012). Molecular structure and spectroscopic (FT-IR, FT-Raman, 13C, 1H NMR and UV) studies of 3,4-dihydroxy-l-phenylalanine using density functional theory. Molecular Simulation, 38(12), 987–1000. https://doi.org/10.1080/08927022.2012.682279
  • vonRanke, N. L., Ribeiro, M. M. J., Miceli, L. A., de Souza, N. P., Abrahim-Vieira, B. A., Castro, H. C., Teixeira, V. L., Rodrigues, C. R., & Souza, A. M. T. (2020). Structure-activity relationship, molecular docking, and molecular dynamic studies of diterpenes from marine natural products with anti-HIV activity. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2020.1845977
  • Walden, S. E., & Wheeler, R. A. (1996). Structural and vibrational analysis of indole by density functional and hybrid Hartree-Fock/density functional methods. Journal of the Chemical Society. Perkin Transactions 2, 12, 2653–2662. https://doi.org/10.1039/P29960002653
  • Zoli, M., Merlo Pich, E., Ferraguti, F., Biagini, G., Fuxe, K., & Agnati, L. F. (1993). Indole-pyruvic acid treatment reduces damage in striatum but not in hippocampus after transient forebrain ischemia in the rat. Neurochemistry International, 23(2), 139–148. https://doi.org/10.1016/0197-0186(93)90091-I

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.