275
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Bio-inspired nickel nanoparticles of pyrimidine-Schiff base: In vitro anticancer, BSA and DNA interactions, molecular docking and antioxidant studies

, , , , , & show all
Pages 10715-10729 | Received 16 Mar 2021, Accepted 20 Jun 2021, Published online: 09 Jul 2021

References

  • Adwin Jose, P., Dhaveethu Raja, J., Sankarganesh, M., & Rajesh, J. (2018). Evaluation of antioxidant, DNA targeting, antimicrobial and cytotoxic studies of imine capped copper and nickel nanoparticles. Journal of Photochemistry and Photobiology. B, Biology, 178, 143–151. https://doi.org/10.1016/j.jphotobiol.2017.11.005
  • Adwin Jose, P., Sankarganesh, M., Dhaveethu Raja, J., & Senthilkumar, G. S. (2020). Synthesis of methoxy substituted pyrimidine derivative imine stabilized copper nanoparticles in organic phase and its biological evaluations. Journal of Molecular Liquids, 305, 112821. https://doi.org/10.1016/j.molliq.2020.112821
  • Adwin Jose, P., Sankarganesh, M., Dhaveethu Raja, J., & Sukkur Saleem, S. (2020). Pyrimidine derivative Schiff base ligand stabilized copper and nickel nanoparticles by two step phase transfer method; in vitro anticancer, antioxidant, anti-microbial and DNA interactions. Journal of Fluorescence, 30(3), 471–482. https://doi.org/10.1007/s10895-020-02510-5
  • Ali, I., Wani, W. A., Saleem, K., & Hsieh, M.-F. (2014). Anticancer metallodrugs of glutamic acid sulphonamides: In silico, DNA binding, hemolysis and anticancer studies. RSC Advances, 4(56), 29629–29641. https://doi.org/10.1039/C4RA02570A
  • Brown, D. A., & Roche, A. L. (1983). Design of metal chelates with biological activity. 3. Nickel(II) complexes of alkyl and amino hydroxamic acids. Inorganic Chemistry, 22(15), 2199–2202. https://doi.org/10.1021/ic00157a021
  • Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., & Whyman, R. (1994). Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system. Journal of the Chemical Society, Chemical Communications, 0(7), 801–802. https://doi.org/10.1039/c39940000801
  • Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., & Vanden Berghe, D. (1998). Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers . Journal of Natural Products, 61(1), 71–76. https://doi.org/10.1021/np970237h
  • Emsley, J. (2011). Nature’s building blocks: An A-Z guide to the elements (2nd ed.). Oxford University Press.
  • Farahani, B. V., Bardajee, G. R., Rajab, F. H., & Hooshyar, Z. (2015). Study on the interaction of Co (III) DiAmsar with serum albumins: Spectroscopic and molecular docking methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 410–416. https://doi.org/10.1016/j.saa.2014.06.078
  • Gehr, P. (2018). Interaction of nanoparticles with biological systems. Colloids and Surfaces B: Biointerfaces, 172, 395–399. https://doi.org/10.1016/j.colsurfb.2018.08.023
  • Grau, J., Brissos, R. F., Salinas-Uber, J., Caballero, A. B., Caubet, A., Roubeau, O., Gregorio, L. K., Tomas, R. P., & Gamez, P. (2015). The effect of potential supramolecular-bond promoters on the DNA-interacting abilities of copper-terpyridine compounds. Dalton Transactions (Cambridge, England : 2003), 44(36), 16061–16072. https://doi.org/10.1039/c5dt02211h
  • Huang, Y., Zhang, Y., Zhang, J., Zhang, D.-W., Lu, Q.-S., Liu, J.-L., Chen, S.-H., Lin, H. H., & Yu, X.-Q. (2009). Synthesis, DNA binding and photocleavage study of novel anthracene-appended macrocyclic polyamines. Organic & Biomolecular Chemistry, 7(11), 2278–2285. https://doi.org/10.1039/b823416g
  • Jamkhande, P. G., Ghule, N. W., Bamer, A. H., & Kalaskar, M. G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. https://doi.org/10.1016/j.jddst.2019.101174
  • Jimoh, A. A., Helal, A., Shaikh, M. N., Abdul Aziz, M., Yamani, Z. H., Al-Ahmed, A., & Kim, J.-P. (2015). Schiff base ligand coated gold nanoparticles for the chemical sensing of Fe(III) ions. Journal of Nanomaterials, 2015, 1–7. https://doi.org/10.1155/2015/101694
  • Kalaivanan, C., Sankarganesh, M., Yosuva Suvaikin, M., Banu Karthi, G., Gurusamy, S., Subramanian, R., & Nandini Asha, R. (2020). Novel Cu(II) and Ni(II) complexes of nicotinamide based Mannich base: Synthesis, characterization, DFT calculation, DNA binding, molecular docking, antioxidant, antimicrobial activities. Journal of Molecular Liquids, 320, 114423. https://doi.org/10.1016/j.molliq.2020.114423
  • Leiva, A., Bonardd, S., Pino, M., Saldías, C., Kortaberria, G., & Radic, D. (2015). Improving the performance of chitosan in the synthesis and stabilization of gold nanoparticles. European Polymer Journal, 68, 419–431. https://doi.org/10.1016/j.eurpolymj.2015.04.032
  • Ling, D., Hackett, M. J., & Hyeon, T. (2014). Surface ligands in synthesis, modification, assembly and biomedical applications of nanoparticles. Nano Today., 9(4), 457–477. https://doi.org/10.1016/j.nantod.2014.06.005
  • Ni, Y., Lin, D., & Kokot, S. (2006). Synchronous fluorescence, UV-visible spectrophotometric, and voltammetric studies of the competitive interaction of bis(1,10-phenanthroline)copper(II) complex and neutral red with DNA. Analytical Biochemistry, 352(2), 231–242. https://doi.org/10.1016/j.ab.2006.02.031
  • Niranjan, M. K., & Chakraborty, J. (2012). Synthesis of oxidation resistant copper nanoparticles in aqueous phase and efficient phase transfer of particles using alkanethiol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 407, 58–63. https://doi.org/10.1016/j.colsurfa.2012.05.007
  • Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications, 46(2), 849–854. https://doi.org/10.1016/s0006-291x(72)80218-3
  • Patel, A., Patel, A., Patel, A., & Patel, N. (2010). Determination of polyphenols and free radical scavenging activity of Tephrosia purpurea linn leaves (Leguminosae). Pharmacognosy Research, 2(3), 152–158. https://doi.org/10.4103/0974-8490.65509
  • Polavarapu, L., Manga, K. K., Yu, K., Ang, P. K., Cao, H. D., Balapanuru, J., Loh, K. P., & Xu, Q.-H. (2011). Alkylamine capped metal nanoparticle “inks” for printable SERS substrates, electronics and broadband photodetectors. Nanoscale, 3(5), 2268–2274. https://doi.org/10.1039/c0nr00972e
  • Rajalakshmi, S., Weyhermüller, T., Dinesh, M., & Nair, B. U. (2012). Copper(II) complexes of terpyridine derivatives: A footstep towards development of antiproliferative agent for breast cancer. Journal of Inorganic Biochemistry, 117, 48–59. https://doi.org/10.1016/j.jinorgbio.2012.08.010
  • Raman, N., Dhaveethu Raja, J., & Sakthivel, A. (2007). Synthesis, spectral characterization of Schiff base transition metal complexes: DNA cleavage and antimicrobial activity studies. Journal of Chemical Sciences, 119(4), 303–310. https://doi.org/10.1007/s12039-007-0041-5
  • Raman, N., & Sudharsan, S. (2011). Phase transfer synthesis of N,N′(1,2-phenylene)bis-hippuricamide tethered metal based functionalized nanoparticles: A study on some novel microbial targeting peptide-mimic nanoparticles. Applied Surface Science, 257(24), 10659–10666. https://doi.org/10.1016/j.apsusc.2011.07.070
  • Sankarganesh, M., Adwin Jose, P., Dhaveethu Raja, J., Kesavan, M. P., Vadivel, M., Rajesh, J., Jeyamurugan, R., Senthil Kumar, R., & Karthikeyan, S. (2017). New pyrimidine based ligand capped gold and platinum nano particles: Synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. Journal of Photochemistry and Photobiology. B, Biology, 176, 44–53. https://doi.org/10.1016/j.jphotobiol.2017.09.013
  • Sankarganesh, M., Raja, J. D., Revathi, N., Solomon, R. V., & Kumar, R. S. (2019). Gold(III) complex from pyrimidine and morpholine analogue Schiff base ligand: Synthesis, characterization, DFT, TDDFT, catalytic, anticancer, molecular modeling with DNA and BSA and DNA binding studies. Journal of Molecular Liquids, 294, 111655. https://doi.org/10.1016/j.molliq.2019.111655
  • Sankarganesh, M., Solomon, R. V., & Dhaveethu Raja, J. (2021). Platinum complex with pyrimidine- and morpholine-based ligand: Synthesis, spectroscopic, DFT, TDDFT, catalytic reduction, in vitro anticancer, antioxidant, antimicrobial, DNA binding and molecular modeling studies. Journal of Biomolecular Structure & Dynamics, 39(3), 1055–1067. https://doi.org/10.1080/07391102.2020.1727364
  • Savadkoohi, S., Bannikova, A., Kasapis, S., & Adhikari, B. (2014). Structural behaviour in condensed bovine serum albumin systems following application of high pressure. Food Chemistry, 150, 469–476. https://doi.org/10.1016/j.foodchem.2013.11.029
  • Sawant, P., Kovalev, E., Klug, J. T., & Efrima, S. (2001). Alkyl xanthates: New capping agents for metal colloids. Capping of platinum nanoparticles. Langmuir, 17(10), 2913–2917. https://doi.org/10.1021/la0014961
  • Senthilkumar, G. S., Sankarganesh, M., Dhaveethu Raja, J., Adwin Jose, P., Sakthivel, A., Christopher Jeyakumar, T., & Nandini Asha, R. (2020). Water soluble Cu(II) and Zn(II) complexes of bidentate-morpholine based ligand: Synthesis, spectral, DFT calculation, biological activities and molecular docking studies. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1821783
  • Senthilkumar, G. S., Sankarganesh, M., Dhaveethu Raja, J., Sakthivel, A., Vijay Solomon, R., & Mitu, L. (2021). Novel metal(II) complexes with pyrimidine derivative ligand: Synthesis, multi‑spectroscopic, DNA binding/cleavage, molecular docking with DNA/BSA, and antimicrobial studies. Monatshefte Für Chemie - Chemical Monthly, 152(2), 251–261. https://doi.org/10.1007/s00706-021-02737-3
  • Senthilkumar, G. S., Sankarganesh, M., Rajesh, J., Vedhi, C., & Dhaveethu Raja, J. (2017). Synthesis, spectral characterization, DNA interaction, antioxidant, and antimicrobial studies of new water soluble metal(II) complexes of morpholine based ligand. Russian Journal of General Chemistry, 87(11), 2654–2663. https://doi.org/10.1134/S1070363217110214
  • Serpen, A., Capuano, E., Fogliano, V., & Gokmen, V. (2007). A new procedure to measure the antioxidant activity of insoluble food components. Journal of Agricultural and Food Chemistry, 55(19), 7676–7681. https://doi.org/10.1021/jf071291z
  • Shaik, A. H., & Chakraborty, J. (2014). Use of repeated phase transfer for preparation of thiol coated copper organosols at higher particle loading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 454, 46–56. https://doi.org/10.1016/j.colsurfa.2014.03.102
  • Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546. https://doi.org/10.1021/ed039p546
  • Sukkur Saleem, S., Sankarganesh, M., Adwin Jose, P., & Dhaveethu Raja, J. (2021). Design, synthesis, antioxidant, antimicrobial, DNA binding and molecular docking studies of morpholine based Schiff base ligand and its metal(II) complexes. Inorganic Chemistry Communications 124, 108396. https://doi.org/10.1016/j.inoche.2020.108396
  • Sukkur Saleem, S., Sankarganesh, M., Adwin Jose, P., Sakthikumar, K., Mitu, L., & Dhaveethu Raja, J. (2017). Investigation of Antimicrobial, antioxidant, and DNA binding studies of bioactive Cu(II), Zn(II), Co(II), and Ni(II) complexes of pyrimidine derivative Schiff base ligand. Journal of Chemistry, 2017, 1–8. https://doi.org/10.1155/2017/3831507
  • Venner, H., & Zimmer, C. (1966). Studies on nucleic acids. VIII. Changes in the stability of DNA secondary structure by interaction with divalent metal ions. Biopolymers, 4(3), 321–335. https://doi.org/10.1002/bip.1966.360040306
  • Vizard, D. L., & Ansevin, A. T. (1976). High resolution thermal denaturation of DNA: Thermalites of bacteriophage DNA. Biochemistry, 15(4), 741–750. https://doi.org/10.1021/bi00649a004
  • Wang, W., Chen, X., & Efrima, S. (1999). Silver nanoparticles capped by long-chain unsaturated carboxylates. The Journal of Physical Chemistry B, 103(34), 7238–7246. https://doi.org/10.1021/jp991101q
  • Wang, P., Li, C., Gong, H., Jiang, X., Wang, H., & Li, K. (2010). Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process. Powder Technology, 203(2), 315–321. https://doi.org/10.1016/j.powtec.2010.05.023
  • Wu, Q., Chen, X., Jia, L., Wang, Y., Sun, Y., Huang, X., Shen, Y., & Wang, J. (2017). Ultrasonic irradiation enhanced the ability of Fluorescein-DA-Fe(III) on sonodynamic and sonocatalytic damages of DNA molecules. Ultrasonics Sonochemistry, 39, 1–11. https://doi.org/10.1016/j.ultsonch.2017.04.005
  • Zhong, L. Y., Tao, W. W., & Wei, C. (2012). Copper nanoclusters: Synthesis, characterization and properties. Chinese Science Bulletin, 57(1), 41–47. https://doi.org/10.1007/s11434-011-4896-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.