655
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Plant derived active compounds as potential anti SARS-CoV-2 agents: an in-silico study

, , , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 10629-10650 | Received 02 Aug 2020, Accepted 18 Jun 2021, Published online: 06 Jul 2021

References

  • Abdelli, I., Hassani, F., Bekkel Brikci, S., & Ghalem, S. (2020). In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by components harvested from Western Algeria. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1763199
  • Antalis, T. M., Bugge, T. H., & Wu, Q. (2011). Membrane-anchored serine proteases in health and disease. Progress in Molecular Biology and Translational Science, 99, 1–50. https://doi.org/10.1016/B978-0-12-385504-6.00001-4
  • Balkrishna, A., Pokhrel, S., Singh, H., Joshi, M., Mulay, V. P., Haldar, S., & Varshney, A (2021). Withanone from Withania somnifera attenuates SARS-CoV-2 RBD and host ACE2 interactions to rescue spike protein induced pathologies in humanized zebrafish model. Drug Design, Development and Therapy, 15, 1111–1133. https://doi.org/10.2147/DDDT.S292805
  • Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M., Walsh, R. M., Jr., Rawson, S., Rits-Volloch, S., & Chen, B. (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science (New York, N.Y.), 369(6511), 1586–1592. https://doi.org/10.1126/science.abd4251
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chandel, V., Raj, S., Rathi, B., & Kumar, D. (2020). In silico identification of potent COVID-19 main protease inhibitors from FDA approved antiviral compounds and active phytochemicals through molecular docking: A drug repurposing approach, Preprints. 7(3), 166–175. http://thesciencein.org/cbl.
  • Choudhary, S., Malik, Y. S., & Tomar, S. (2020). Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Frontiers in Immunology, 11, 1664. https://doi.org/10.3389/fimmu.2020.01664
  • Coronavirus Update (Live): 154,815,600 cases and 3,236,104 deaths from COVID-19 Virus Pandemic – Worldometer. Retrieved May 4, 2021, from https://www.worldometers.info/coronavirus
  • Devaux, C. A., Rolain, J.-M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection, 53(3), 425–435. https://doi.org/10.1016/j.jmii.2020.04.015
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32(Web Server Issue), W665–W667. https://doi.org/10.1093/nar/gkh381
  • Drew, E. D., & Janes, R. W. (2020). Identification of a druggable binding pocket in the spike protein reveals a key site for existing drugs potentially capable of combating Covid-19 infectivity. BMC Molecular and Cell Biology, 21(1), 1–13. https://doi.org/10.1186/s12860-020-00294-x
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics, 39(8), 2980–2913. https://doi.org/10.1080/07391102.2020.1758791
  • HDOCK Server. (2020). Retrieved July 28, from http://hdock.phys.hust.edu.cn
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052 Epub 2020 Mar 5.
  • Hooper, J. D., Clements, J. A., Quigley, J. P., Antalis, T. M (2021). Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. The Journal of Biological Chemistry, 276(2), 857–860. https://doi.org/10.1074/jbc.R000020200
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 1565(3), 712–725. https://doi.org/10.1002/prot.21123
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hussain, M., Jabeen, N., Amanullah, A., Baig, A. A., Aziz, B., Shabbir, S., Raza, F., & Uddin, N. (2020). Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein: Conformation and intermolecular interactions. AIMS Microbiology, 6(3), 350–360.
  • Indari, O., Jakhmola, S., Elangovan, M., & Jha, H. C. (2021). An update on antiviral therapy against SARS-CoV-2: How far have we come? Frontiers in Pharmacology, (11), 133. https://doi.org/10.3389/fphar.2021.632677
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Jakhmola, S., Hazarika, Z., Jha, A. N., & Jha, H. C. (2021). In silico analysis of antiviral phytochemicals efficacy against Epstein–Barr virus glycoprotein H. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2020.1871074
  • Jakhmola, S., Indari, O., Baral, B., Kashyap, D., Varshney, N., Das, A., Chatterjee, S., & Jha, H. C. (2020). Comorbidity assessment is essential during COVID-19 treatment. Frontiers in Physiology, (11), 984. https://doi.org/10.3389/fphys.2020.00984
  • Jakhmola, S., Indari, O., Kashyap, D., Varshney, N., Rani, A., Sonkar, C., Baral, B., Chatterjee, S., Das, A., Kumar, R., & Jha, H. C. (2020). Recent updates on COVID-19: A holistic review. Heliyon, 6(12), e05706. https://doi.org/10.1016/j.heliyon.2020.e05706
  • Joshi, T., Joshi, T., Sharma, P., Mathpal, S., Pundir, H., Bhatt, V., & Chandra, S. (2020). In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. European Review for Medical and Pharmacological Sciences, 24(8), 4529–4536. https://doi.org/10.26355/eurrev_202004_21036
  • Kalra, R. S., Kumar, V., Dhanjal, J. K., Garg, S., Li, X., Kaul, S. C., Sundar, D., & Wadhwa, R. (2021). COVID19-inhibitory activity of withanolides involves targeting of the host cell surface receptor ACE2: Insights from computational and biochemical assays. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2021.1902858
  • Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., & Vajda, S. (2015). The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nature Protocols, 10(5), 733–755. https://doi.org/10.1038/nprot.2015.043
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Muralidharan, M., & Rao, G. H. R. (2020). Oxygen as a therapeutic drug: Hyperbaric oxygen therapy. Biomedical and Pharmacology Journal, 13(02), 521–528. https://doi.org/10.13005/bpj/1913
  • Orlando, S. J., Santiago, Y., DeKelver, R. C., Freyvert, Y., Boydston, E. A., Moehle, E. A., Choi, V. M., Gopalan, S. M., Lou, J. F., Li, J., Miller, J. C., Holmes, M. C., Gregory, P. D., Urnov, F. D., & Cost, G. J. (2010). Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Research, 38(15), e152. https://doi.org/10.1093/nar/gkq512
  • Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI Journal, 19, 410–417. https://doi.org/10.17179/excli2020-1167
  • Patel, V. B., Clarke, N., Wang, Z., Fan, D., Parajuli, N., Basu, R., Putko, B., Kassiri, Z., Turner, A. J., & Oudit, G. Y. (2014). Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS. Journal of Molecular and Cellular Cardiology, 66, 167–176. https://doi.org/10.1016/j.yjmcc.2013.11.017 Epub 2013 Dec 9
  • Patel, V. B., Zhong, J.-C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circulation Research, 118(8), 1313–1326. https://doi.org/10.1161/CIRCRESAHA.116.307708
  • Pierri, C. L. (2020). SARS-CoV-2 spike protein: Flexibility as a new target for figurehting infection. Signal Transduction and Targeted Therapy, 5(1), 1–3. https://doi.org/10.1038/s41392-020-00369-3
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • PubChem. Retrieved from July 28, 2020, from https://pubchem.ncbi.nlm.nih.gov/
  • RAMPAGE: Ramachandran Plot Assessment, v6.0, DOE‐MBI Structure Lab UCLA 2020. Retrieved June 11, 2021, from http://http://services.mbi.ucla.edu/SAVES/Ramachandran.
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • R. P. D. Bank. RCSB PDB: Homepage. Retrieved July 28, 2020, from https://www.rcsb.org/
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sager, A. A., Abood, Z. S., El-Amary, W. M., Bensaber, S. M., Al-Sadawe, I. A., Ermeli, N. B., Mohamed, S. B., Al-Forgany, M., Mrema, I. A., Erhuma, M., Hermann, A., & Gbaj, A. M. (2018). Design, synthesis and biological evaluation of some triazole Schiff's base derivatives as potential antitubercular agents. The Open Medicinal Chemistry Journal, 12, 48–59. https://doi.org/10.2174/1874104501812010048
  • SAVES v5.0 - DOE-MBI Structure Lab UCLA. Retrieved July 28, 2020, from https://servicesn.mbi.ucla.edu/SAVES/
  • Shah, B., Modi, P., & Sagar, R. (2020). In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sciences, 252, 117652. https://doi.org/10.1016/j.lfs.2020.117652
  • Silva, D. R., Cássia, J. D., Sardi, O., Freires, I., Cristina, A., Pedro, B., & Rosalen, L. (2019). In silico approaches for screening molecular targets in Candida albicans: A proteomic insight into drug discovery and development. European Journal of Pharmacology, 842, 64–69. https://doi.org/10.1016/j.ejphar.2018.10.016
  • Sinha, S. K., Shakya, A., Prasad, S. K., Singh, S., Gurav, N. S., Prasad, R. S., & Gurav, S. S. (2020). An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. Journal of Biomolecular Structure and Dynamics, 39(9), 3244–3255. https://doi.org/10.1080/07391102.2020.1762741
  • Sonkar, C., Kashyap, D., Varshney, N., Baral, B., & Jha, H. C. (2020). Impact of gastrointestinal symptoms in COVID-19: A molecular approach. SN Comprehensive Clinical Medicine, 2(12), 2658–2612. https://doi.org/10.1007/s42399-020-00619-z
  • Stalin Raj, V., Mou, H., Smits, S. L., Dekkers, D. H. W., Müller, M. A., Dijkman, R., Muth, D., Demmers, J. A. A., Zaki, A., Fouchier, R. A. M., Thiel, V., Drosten, C., Rottier, P. J. M., Albert, D. M., Bosch, B. J., & Haagmans, B. L. (2013). Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495(7440), 251–254. https://doi.org/10.1038/nature12005
  • Straughn, A. R., & Kakar, S. S. (2020). Withaferin A: A potential therapeutic agent against COVID-19 infection. Journal of Ovarian Research, 13(1), 1–5. https://doi.org/10.1186/s13048-020-00684-x
  • SwissADME. Retrieved July 28, 2020, from http://www.swissadme.ch/index.php
  • Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, F., Kepel, B. J., Idroes, R., & Effendi, Y. (2020). Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study. Medicine & Pharmacology, 2020,18. https://doi.org/10.1155/2020/6307457.
  • Thunders, M., & Delahunt, B. (2020). Gene of the month: TMPRSS2 (transmembrane serine protease 2). Journal of Clinical Pathology, 73(12), 773–776. https://doi.org/10.1136/jclinpath-2020-206987
  • UniProt. Retrieved July 28, 2020, from http://www.uniprot.org/
  • Vadapalli, J., Gallagher, V., Vanam, A., Motohashi, N., & Gollapudi, R. (2018). Integrated in silico docking and MoMA simulation approaches reveal Withaferin A, Withalongolides A and B as potent aldoketo reductase (AKR) 1C3 inhibitors. Journal of in Silico & in Vitro Pharmacology, 04, 4. https://doi.org/10.21767/2469-6692.10026
  • Walls, A. C., Park, Y.-J., Alexandra Tortorici, M., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function and antigenicity of the SARS-CoV-2 spike glycoprotein, 181(2), 281–292.e6. https://doi.org/10.1101/2020.02.19.956581
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky4
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Zhang, D.-H., Wu, K.-L., Zhang, X., Deng, S.-Q., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158. https://doi.org/10.1016/j.joim.2020.02.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.