458
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, α-amylase and α-glucosidase inhibition and molecular docking studies of indazole derivatives

ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 10730-10740 | Received 06 Jan 2021, Accepted 21 Jun 2021, Published online: 31 Aug 2021

References

  • Aryangat, A. V., & Gerich, J. E. (2010). Type 2 diabetes: Postprandial hyperglycemia and increased cardiovascular risk. Vascular Health Risk Manage, 6, 145.
  • Bischoff, H. (1995). The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clinical and Investigative Medicine. Medecine Clinique et Experimentale, 18(4), 303–311.
  • Cai, C. Y., Rao, L., Rao, Y., Guo, J. X., Xiao, Z. Z., Cao, J. Y., Huang, Z. S., & Wang, B. (2017). Analogues of xanthones-Chalcones and bis-chalcones as α-glucosidase inhibitors and anti-diabetes candidates. European Journal of Medicinal Chemistry, 130, 51–59. https://doi.org/10.1016/j.ejmech.2017.02.007
  • Campos, C. (2012). Chronic hyperglycemia and glucose toxicity: Pathology and clinical sequelae. Postgraduate Medicine, 124(6), 90–97. https://doi.org/10.3810/pgm.2012.11.2615
  • Carpenter, R. D., Natarajan, A., Lau, E. Y., Andrei, M., Solano, D. M., Lightstone, F. C., DeNardo, S. J., Lam, K. S., & Kurth, M. J. (2010). Halogenated benzimidazole carboxamides target integrin alpha4beta1 on T-cell and B-cell lymphomas. Cancer Research, 70(13), 5448–5456. https://doi.org/10.1158/0008-5472.CAN-09-3736
  • Carroll, M. F., Gutierrez, A., Castro, M., Tsewang, D., & Schade, D. S. (2003). Targeting postprandial hyperglycemia: A comparative study of insulin tropic agents in type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism, 88(11), 5248–5254. https://doi.org/10.1210/jc.2003-030649
  • Chandrasekhar, T., Reddy, A. B., Kumar, L. V., & Naik, P. J. (2012). Synthesis and biological evaluation of some new indazole-3-carboxamide derivative. Der Pharma Chemica, 4(3), 1311–1316.
  • Chevalier, A., Ouahrouch, A., Arnaud, A., Gallavardin, T., & Franck, X. (2018). An optimized procedure for direct access to 1H-indazole-3-carboxaldehyde derivatives by nitrosation of indoles. RSC Advances, 8(24), 13121–13128. https://doi.org/10.1039/C8RA01546E
  • Dong, J., Zhang, Q., Wang, Z., Huang, G., & Li, S. (2018). Recent advances in the development of indazole-based anticancer agents. ChemMedChem, 13(15), 1490–1507. https://doi.org/10.1002/cmdc.201800253
  • Gaikwad, D. D., Chapolikar, A. D., Devkate, C. G., Warad, K. D., Tayade, A. P., Pawar, R. P., & Domb, A. J. (2015). Synthesis of indazole motifs and their medicinal importance: An overview. European Journal of Medicinal Chemistry, 90, 707–731. https://doi.org/10.1016/j.ejmech.2014.11.029
  • Garg, S. K., Maurer, H., Reed, K., & Selagamsetty, R. (2014). Diabetes and cancer: Two diseases with obesity as a common risk factor. Diabetes, Obesity & Metabolism, 16(2), 97–110. https://doi.org/10.1111/dom.12124
  • Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., & Yee, D. (2010). Diabetes and Cancer. Diabetes Care, 33(7), 1674–1685. https://doi.org/10.2337/dc10-0666
  • Gollapalli, M., Taha, M., Ullah, H., Nawaz, M., AlMuqarrabun, L. M. R., Rahim, F., Qureshi, F., Mosaddik, A., Ahmat, N., & Khan, K. M. (2018). Synthesis of Bis-indolylmethane sulfonohydrazides derivatives as potent α-Glucosidase inhibitors. Bioorganic Chemistry, 80, 112–120. https://doi.org/10.1016/j.bioorg.2018.06.001
  • Harish, K. P., Mohana, K. N., & Mallesha, L. (2013). Synthesis of indazole substituted-1,3,4-thiadiazoles and their anticonvulsant activity. Drug Invention Today, 5(2), 92–99. https://doi.org/10.1016/j.dit.2013.06.002
  • Joshi, S. R., Standl, E., Tong, N., Shah, P., Kalra, S., & Rathod, R. (2015). Therapeutic potential of α-glucosidase inhibitors in type 2 diabetes mellitus: an evidence-based review. Expert Opinion on Pharmacotherapy, 16(13), 1959–1981. https://doi.org/10.1517/14656566.2015.1070827
  • Kawde, A.-N., Taha, M., Alansari, R. S., Almandil, N. B., Anouar, E. H., Uddin, N., Rahim, F., Chigurupati, S., Nawaz, M., Hayat, S., Ibrahim, M., Elakurthy, P. K., Vijayan, V., Morsy, M., Ibrahim, H., Baig, N., & Khan, K. M. (2020). Exploring efficacy of indole-based dual inhibitors for α-glucosidase and α-amylase enzymes: In silico, biochemical and kinetic studies. International Journal of Biological Macromolecules, 154, 217–232. https://doi.org/10.1016/j.ijbiomac.2020.03.090
  • Miller, B. R., Nguyen, H., Hu, C. J. H., Lin, C., & Nguyen, Q. T. (2014). New and emerging drugs and targets for type 2 diabetes: Reviewing the evidence. American Health & Drug Benefits, 7(8), 452–463.
  • Muller, L. M. A. J., Gorter, K. J., Hak, E., Goudzwaard, W. L., Schellevis, F. G., Hoepelman, A. I. M., & Rutten, G. E. H. M. (2005). Increased risk of common infections in patients with type 1 and type 2 diabetes mellitus. Clinical Infectious Diseases, 41(3), 281–288. https://doi.org/10.1086/431587
  • Nawaz, M., Taha, M., Qureshi, F., Ullah, N., Selvaraj, M., Shahzad, S., Chigurupati, S., Waheed, A., & Almutairi, F. A. (2020). Structural elucidation, molecular docking, α-amylase and α-glucosidase inhibition studies of 5-amino-nicotinic acid derivatives. BMC Chemistry, 14(1), 43. https://doi.org/10.1186/s13065-020-00695-1
  • Park, J. S., Yu, K. A., Kang, T. H., Kim, S., & Suh, Y.-G. (2007). Discovery of novel indazole-linked triazoles as antifungal agents. Bioorganic & Medicinal Chemistry Letters, 17(12), 3486–3490. https://doi.org/10.1016/j.bmcl.2007.03.074
  • Patch, R. J., Huang, H., Patel, S., Cheung, W., Xu, G., Zhao, B.-P., Beauchamp, D. A., Rentzeperis, D., Geisler, J. G., Askari, H. B., Liu, J., Kasturi, J., Towers, M., Gaul, M. D., & Player, M. R. (2017). Indazole-based ligands for estrogen-related receptor a as potential antidiabetic agents. European Journal of Medicinal Chemistry, 138, 830–853. https://doi.org/10.1016/j.ejmech.2017.07.015
  • Pili, R., Chang, J., Partis, R. A., Mueller, R. A., Chrest, F. J., & Passaniti, A. (1995). The α-glucosidase I inhibitor castanospermine alters endothelial cell glycosylation, prevents angiogenesis, and inhibits tumor growth. Cancer Research, 55(13), 2920–2926.
  • Qian, S., He, T., Wang, W., He, Y., Zhang, M., Yang, L., Li, G., & Wang, Z. (2016). Discovery and preliminary structure-activity relationship of 1H-indazoles with promising indoleamine-2,3-dioxygenase 1 (IDO1) inhibition properties. Bioorganic & Medicinal Chemistry, 24(23), 6194–6205. https://doi.org/10.1016/j.bmc.2016.10.003
  • Rafique, R., Khan, K. M., Arshia, Kanwal, Chigurupati, S., Wadood, A., Rehman, A. U., Karunanidhi, A., Hameed, S., Taha, M., & Al-Rashida, M. (2020). Synthesis of new indazole based dual inhibitors of α-glucosidase and α-amylase enzymes, their in vitro, in silico and kinetics studies. Bioorganic Chemistry, 94, 103195. https://doi.org/10.1016/j.bioorg.2019.103195
  • Rani, V., Deep, G., Singh, R. K., Palle, K., & Yadav, U. C. S. (2016). Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences, 148, 183–193. https://doi.org/10.1016/j.lfs.2016.02.002
  • Ren, L. M., Qin, X. H., Cao, X. F., Wang, L. L., Bai, F., Bai, G., & Shen, Y. (2011). Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein & Cell, 2(10), 827–836. https://doi.org/10.1007/s13238-011-1105-3
  • Rosak, C., & Mertes, G. (2012). Critical evaluation of the role of acarbose in the treatment of diabetes: Patient considerations. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 5, 357–367. https://doi.org/10.2147/DMSO.S28340
  • Samuel, S. M., Varghese, E., Varghese, S., & Busselberg, D. (2018). Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treatment Reviews, 70, 98–111. https://doi.org/10.1016/j.ctrv.2018.08.004
  • Schutz, F. A. B., Choueiri, T. K., & Sternberg, C. N. (2011). Pazopanib: Clinical development of a potent anti-angiogenic drug. Critical Reviews in Oncology/Hematology, 77(3), 163–171. https://doi.org/10.1016/j.critrevonc.2010.02.012
  • Senthil, S. L., Chandrasekaran, R., Arjun, H. A., & Anantharaman, P. (2019). In vitro and in silico inhibition properties of fucoidan against α-amylase and α-D-glucosidase with relevance to type 2 diabetes mellitus. Carbohydrate Polymers, 209, 350–355.
  • Song, F., Xu, G., Gaul, M. D., Zhao, B., Lu, T., Zhang, R., DesJarlais, R. L., DiLoreto, K., Huebert, N., Shook, B., Rentzeperis, D., Santulli, R., Eckardt, A., & Demarest, K. (2019). Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 29(15), 1974–1980. https://doi.org/10.1016/j.bmcl.2019.05.036
  • Suh, S., & Kim, K.-W. (2011). Diabetes and cancer: Is diabetes causally related to cancer? Diabetes & Metabolism Journal, 35(3), 193–198. https://doi.org/10.4093/dmj.2011.35.3.193
  • Taha, M., Baharudin, M. S., Ismail, N. H., Imran, S., Khan, M. N., Rahim, F., Selvaraj, M., Chigurupati, S., Nawaz, M., Qureshi, F., & Vijayabalan, S. (2018). Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 80, 36–42. https://doi.org/10.1016/j.bioorg.2018.05.021
  • Taha, M., Rahim, F., Zaman, K., Selvaraj, M., Uddin, N., Farooq, R. K., Nawaz, M., Sajid, M., Nawaz, F., Ibrahim, M., & Khan, K. M. (2020). Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorganic Chemistry, 95, 103555.
  • Taha, M., Shah, S. A., Imran, S., Afifi, M., Chigurupati, S., Selvaraj, M., Rahim, F., Ullah, H., Zaman, K., & Vijayabalan, S. (2017). Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor. Bioorganic Chemistry, 75, 78–85. https://doi.org/10.1016/j.bioorg.2017.09.002
  • Taneja, G., Gupta, C. P., Mishra, S., Srivastava, R., Rahuja, N., Rawat, A. K., Pandey, J., Gupta, A. P., Jaiswal, N., Gayen, J. R., Tamrakar, A. K., Srivastava, A. K., & Goel, A. (2017). Synthesis of substituted 2H-benzo[e]indazole-9-carboxylate as a potent antihyperglycemic agent that may act through IRS-1, Akt and GSK-3β pathways. MedChemCommun, 8(2), 329–337. https://doi.org/10.1039/c6md00467a
  • Upadhyay, A., Srivastava, S. K., & Srivastava, S. D. (2010). Conventional and microwave assisted synthesis of Some new N-[(4-oxo-2-substituted aryl −1, 3-thiazolidine)-acetamidyl]- 5-nitroindazoles and its antimicrobial activity. European Journal of Medicinal Chemistry, 45(9), 3541–3548. https://doi.org/10.1016/j.ejmech.2010.04.029
  • Vidyacharan, S., Adhikari, C., Krishna, V. S., Reshma, R. S., Sriram, D., & Sharada, D. S. (2017). A robust synthesis of functionalized 2H-indazoles via solid state melt reaction (SSMR) and their anti-tubercular activity. Bioorganic & Medicinal Chemistry Letters, 27(7), 1593–1597. https://doi.org/10.1016/j.bmcl.2017.02.021
  • Williams, L. K., Zhang, X., Caner, S., Tysoe, C., Nguyen, N. T., Wicki, J., Williams, D. E., Coleman, J., McNeill, J. H., Yuen, V., Andersen, R. J., Withers, S. G., & Brayer, G. D. (2015). The amylase inhibitor montbretin A reveals a new glycosidase inhibition motif. Nature Chemical Biology, 11(9), 691–696. https://doi.org/10.1038/nchembio.1865
  • World Health Organization. (2021). Diabetes fact sheet. https://www.who.int/news-room/fact-sheets/detail/diabetes.
  • Wu, G., Robertson, D. H., Brooks III, C. L., & Vieth, M. (2003). Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD Docking algorithm. Journal of Computational Chemistry, 24(13), 1549–1564. https://doi.org/10.1002/jcc.10306
  • Zeng, L., Zhang, G., Liao, Y., & Gong, D. (2016). Inhibitory mechanism of morin on α-glucosidase and its anti-glycation properties. Food & Function, 7(9), 3953–3963. https://doi.org/10.1039/c6fo00680a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.