383
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural insights into the mechanism of human methyltransferase hPRMT4

, &
Pages 10821-10834 | Received 05 Dec 2020, Accepted 28 Jun 2021, Published online: 24 Jul 2021

References

  • An, W., Kim, J., & Roeder, R. G. (2004). Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell, 117(6), 735–748. https://doi.org/10.1016/j.cell.2004.05.009
  • Astl, L., & Verkhivker, G. M. (2019). Atomistic modeling of the ABL kinase regulation by allosteric modulators using structural perturbation analysis and community-based network reconstruction of allosteric communications. Journal of Chemical Theory and Computation, 15(5), 3362–3380. https://doi.org/10.1021/acs.jctc.9b00119
  • Bedford, M. T., & Clarke, S. G. (2009). Protein arginine methylation in mammals: Who, what, and why. Molecular Cell, 33(1), 1–13. https://doi.org/10.1016/j.molcel.2008.12.013
  • Blanc, R. S., & Richard, S. (2017). Arginine methylation: The coming of age. Molecular Cell, 65(1), 8–24. https://doi.org/10.1016/j.molcel.2016.11.003
  • Boriack-Sjodin, P. A., Jin, L., Jacques, S. L., Drew, A., Sneeringer, C., Scott, M. P., Moyer, M. P., Ribich, S., Moradei, O., & Copeland, R. A. (2016). Structural insights into ternary complex formation of human CARM1 with various substrates. ACS Chemical Biology, 11(3), 763–771. https://doi.org/10.1021/acschembio.5b00773
  • Covic, M., Hassa, P. O., Saccani, S., Buerki, C., Meier, N. I., Lombardi, C., Imhof, R., Bedford, M. T., Natoli, G., & Hottiger, M. O. (2005). Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-kappaB-dependent gene expression. The EMBO Journal, 24(1), 85–96. https://doi.org/10.1038/sj.emboj.7600500
  • Deriu, M. A., Shkurti, A., Paciello, G., Bidone, T. C., Morbiducci, U., Ficarra, E., Audenino, A., & Acquaviva, A. (2012). Multiscale modeling of cellular actin filaments: From atomistic molecular to coarse-grained dynamics. Proteins, 80(6), 1598–1609. https://doi.org/10.1002/prot.24053
  • Desikan, R., Patra, S. M., Sarthak, K., Maiti, P. K., & Ayappa, K. G. (2017). Comparison of coarse-grained (MARTINI) and atomistic molecular dynamics simulations of α and β toxin nanopores in lipid membranes. Journal of Chemical Sciences, 129(7), 1017–1030. https://doi.org/10.1007/s12039-017-1316-0
  • Dillon, M. B. C., Rust, H. L., Thompson, P. R., & Mowen, K. A. (2013). Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. The Journal of Biological Chemistry, 288(39), 27872–27880. https://doi.org/10.1074/jbc.M113.491092
  • Du, Y., Yang, H., Xu, Y., Cang, X., Luo, C., Mao, Y., Wang, Y., Qin, G., Luo, X., & Jiang, H. (2012). Conformational transition and energy landscape of ErbB4 activated by neuregulin1β: One microsecond molecular dynamics simulations. Journal of the American Chemical Society, 134(15), 6720–6731. https://doi.org/10.1021/ja211941d
  • Durrant, J. D., Votapka, L., Sørensen, J., & Amaro, R. E. (2014). POVME 2.0: An enhanced tool for determining pocket shape and volume characteristics. Journal of Chemical Theory and Computation, 10(11), 5047–5056. https://doi.org/10.1021/ct500381c
  • Eargle, J., & Luthey-Schulten, Z. (2012). NetworkView: 3D display and analysis of protein·RNA interaction networks. Bioinformatics (Oxford, England), 28(22), 3000–3001. https://doi.org/10.1093/bioinformatics/bts546
  • Fulton, M. D., Brown, T., & Zheng, Y. G. (2018). Mechanisms and inhibitors of histone arginine methylation. Chemical Record (New York, N.Y.), 18(12), 1792–1807. https://doi.org/10.1002/tcr.201800082
  • Gandhi, P. S., Chen, Z., Mathews, F. S., & Di Cera, E. (2008). Structural identification of the pathway of long-range communication in an allosteric enzyme. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 1832–1837. https://doi.org/10.1073/pnas.0710894105
  • Glykos, N. M. (2006). Software news and updates. Carma: A molecular dynamics analysis program. Journal of Computational Chemistry, 27(14), 1765–1768. https://doi.org/10.1002/jcc.20482
  • Goodey, N. M., & Benkovic, S. J. (2008). Allosteric regulation and catalysis emerge via a common route. Nature Chemical Biology, 4(8), 474–482. https://doi.org/10.1038/nchembio.98
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Greener, J. G., & Sternberg, M. J. (2018). Structure-based prediction of protein allostery. Current Opinion in Structural Biology, 50, 1–8. https://doi.org/10.1016/j.sbi.2017.10.002
  • Gunnell, E. A., Al-Noori, A., Muhsen, U., Davies, C. C., Dowden, J., & Dreveny, I. (2020). Structural and biochemical evaluation of bisubstrate inhibitors of protein arginine N-methyltransferases PRMT1 and CARM1 (PRMT4). The Biochemical Journal, 477(4), 787–800. https://doi.org/10.1042/BCJ20190826
  • Hansia, P., Ghosh, A., & Vishveshwara, S. (2009). Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks. Molecular bioSystems, 5(12), 1860–1872. https://doi.org/10.1039/b903807h
  • Heinke, R., Spannhoff, A., Meier, R., Trojer, P., Bauer, I., Jung, M., & Sippl, W. (2009). Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem, 4(1), 69–77. https://doi.org/10.1002/cmdc.200800301
  • Higashimoto, K., Kuhn, P., Desai, D., Cheng, X., & Xu, W. (2007). Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proceedings of the National Academy of Sciences of the United States of America, 104(30), 12318–12323. https://doi.org/10.1073/pnas.0610792104
  • Jarrold, J., & Davies, C. C. (2019). PRMTs and Arginine Methylation: Cancer's Best-Kept Secret? Trends in Molecular Medicine, 25(11), 993–1009. https://doi.org/10.1016/j.molmed.2019.05.007
  • Keskin, O. (2002). Comparison of full-atomic and coarse-grained models to examine the molecular fluctuations of c-AMP dependent protein kinase. Journal of Biomolecular Structure & Dynamics, 20(3), 333–345. https://doi.org/10.1080/07391102.2002.10506852
  • Liu, F., Li, F., Ma, A., Dobrovetsky, E., Dong, A., Gao, C., Korboukh, I., Liu, J., Smil, D., Brown, P. J., Frye, S. V., Arrowsmith, C. H., Schapira, M., Vedadi, M., & Jin, J. (2013). Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. Journal of Medicinal Chemistry, 56(5), 2110–2124. https://doi.org/10.1021/jm3018332
  • Miao, Y., Nichols, S. E., Gasper, P. M., Metzger, V. T., & McCammon, J. A. (2013). Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 10982–10987. https://doi.org/10.1073/pnas.1309755110
  • Monticelli, L., Kandasamy, S. K., Periole, X., Larson, R. G., Tieleman, D. P., & Marrink, S.-J. (2008). The MARTINI coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation, 4(5), 819–834. https://doi.org/10.1021/ct700324x
  • Moore, T. C., Iacovella, C. R., & McCabe, C. (2014). Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. The Journal of Chemical Physics, 140(22), 224104. https://doi.org/10.1063/1.4880555
  • Nakayama, K., Szewczyk, M. M., Dela Sena, C., Wu, H., Dong, A., Zeng, H., Li, F., de Freitas, R. F., Eram, M. S., Schapira, M., Baba, Y., Kunitomo, M., Cary, D. R., Tawada, M., Ohashi, A., Imaeda, Y., Saikatendu, K. S., Grimshaw, C. E., Vedadi, M., … Brown, P. J. (2018). TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget, 9(26), 18480–18493. https://doi.org/10.18632/oncotarget.24883
  • Palte, R. L., Schneider, S. E., Altman, M. D., Hayes, R. P., Kawamura, S., Lacey, B. M., Mansueto, M. S., Reutershan, M., Siliphaivanh, P., Sondey, C., Xu, H., Xu, Z., Ye, Y., & Machacek, M. R. (2020). Allosteric modulation of protein arginine methyltransferase 5 (PRMT5). ACS Medicinal Chemistry Letters, 11(9), 1688–1693. https://doi.org/10.1021/acsmedchemlett.9b00525
  • Pei, J., Yin, N., Ma, X., & Lai, L. (2014). Systems biology brings new dimensions for structure-based drug design. Journal of the American Chemical Society, 136(33), 11556–11565. https://doi.org/10.1021/ja504810z
  • Ran, T., Li, W., Peng, B., Xie, B., Lu, T., Lu, S., & Liu, W. (2019). Virtual screening with a structure-based pharmacophore model to identify small-molecule inhibitors of CARM1. Journal of Chemical Information and Modeling, 59(1), 522–534. https://doi.org/10.1021/acs.jcim.8b00610
  • Scebba, F., De Bastiani, M., Bernacchia, G., Andreucci, A., Galli, A., & Pitto, L. (2007). PRMT11: A new Arabidopsis MBD7 protein partner with arginine methyltransferase activity. The Plant Journal: For Cell and Molecular Biology, 52(2), 210–222. https://doi.org/10.1111/j.1365-313X.2007.03238.x
  • Selvi, B. R., Batta, K., Kishore, A. H., Mantelingu, K., Varier, R. A., Balasubramanyam, K., Pradhan, S. K., Dasgupta, D., Sriram, S., Agrawal, S., & Kundu, T. K. (2010). Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 Arg-17. The Journal of Biological Chemistry, 285(10), 7143–7152. https://doi.org/10.1074/jbc.M109.063933
  • Shishkova, E., Zeng, H., Liu, F., Kwiecien, N. W., Hebert, A. S., Coon, J. J., & Xu, W. (2017). Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nature Communications, 8, 15571. https://doi.org/10.1038/ncomms15571
  • Siarheyeva, A., Senisterra, G., Allali-Hassani, A., Dong, A., Dobrovetsky, E., Wasney, G. A., Chau, I., Marcellus, R., Hajian, T., Liu, F., Korboukh, I., Smil, D., Bolshan, Y., Min, J., Wu, H., Zeng, H., Loppnau, P., Poda, G., Griffin, C., … Vedadi, M. (2012). An allosteric inhibitor of protein arginine methyltransferase 3. Structure (London, England : 1993), 20(8), 1425–1435. https://doi.org/10.1016/j.str.2012.06.001
  • Sun, L., Wang, M., Lv, Z., Yang, N., Liu, Y., Bao, S., Gong, W., & Xu, R.-M. (2011). Structural insights into protein arginine symmetric dimethylation by PRMT5. Proceedings of the National Academy of Sciences of the United States of America, 108(51), 20538–20543. https://doi.org/10.1073/pnas.1106946108
  • Tewary, S. K., Zheng, Y. G., & Ho, M. C. (2019). Protein arginine methyltransferases: Insights into the enzyme structure and mechanism at the atomic level. Cellular and Molecular Life Sciences: CMLS, 76(15), 2917–2932. https://doi.org/10.1007/s00018-019-03145-x
  • Troffer-Charlier, N., Cura, V., Hassenboehler, P., Moras, D., & Cavarelli, J. (2007). Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. The EMBO Journal, 26(20), 4391–4401. https://doi.org/10.1038/sj.emboj.7601855
  • Vanwart, A. T., Eargle, J., Luthey-Schulten, Z., & Amaro, R. E. (2012). Exploring residue component contributions to dynamical network models of allostery. Journal of Chemical Theory and Computation, 8(8), 2949–2961. https://doi.org/10.1021/ct300377a
  • Weiss, V. H., McBride, A. E., Soriano, M. A., Filman, D. J., Silver, P. A., & Hogle, J. M. (2000). The structure and oligomerization of the yeast arginine methyltransferase, Hmt1. Nature Structural Biology, 7(12), 1165–1171. https://doi.org/10.1038/82028
  • Wolf, S. S. (2009). The protein arginine methyltransferase family: An update about function, new perspectives and the physiological role in humans. Cellular and Molecular Life Sciences: CMLS, 66(13), 2109–2121. https://doi.org/10.1007/s00018-009-0010-x
  • Yang, Y., Hadjikyriacou, A., Xia, Z., Gayatri, S., Kim, D., Zurita-Lopez, C., Kelly, R., Guo, A., Li, W., Clarke, S. G., & Bedford, M. T. (2015). PRMT9 is a type II methyltransferase that methylates the splicing factor SAP145. Nature Communications, 6, 6428. https://doi.org/10.1038/ncomms7428
  • Ye, F., Zhang, J., Liu, H., Hilgenfeld, R., Zhang, R., Kong, X., Li, L., Lu, J., Zhang, X., Li, D., Jiang, H., Yang, C.-G., & Luo, C. (2013). Helix unfolding/refolding characterizes the functional dynamics of Staphylococcus aureus Clp protease. The Journal of Biological Chemistry, 288(24), 17643–17653. https://doi.org/10.1074/jbc.M113.452714
  • Yue, W. W., Hassler, M., Roe, S. M., Thompson-Vale, V., & Pearl, L. H. (2007). Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase. The EMBO Journal, 26(20), 4402–4412. https://doi.org/10.1038/sj.emboj.7601856
  • Zhang, X., & Cheng, X. (2003). Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure (London, England: 1993), 11(5), 509–520. https://doi.org/10.1016/S0969-2126(03)00071-6
  • Zhang, X., Zhou, L., & Cheng, X. (2000). Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. The EMBO Journal, 19(14), 3509–3519. https://doi.org/10.1093/emboj/19.14.3509
  • Zhou, R., Xie, Y., Hu, H., Hu, G., Patel, V. S., Zhang, J., Yu, K., Huang, Y., Jiang, H., Liang, Z., Zheng, Y. G., & Luo, C. (2015). Molecular mechanism underlying PRMT1 dimerization for SAM binding and methylase activity. Journal of Chemical Information and Modeling, 55(12), 2623–2632. https://doi.org/10.1021/acs.jcim.5b00454
  • Zurita-Lopez, C. I., Sandberg, T., Kelly, R., & Clarke, S. G. (2012). Human protein arginine methyltransferase 7 (PRMT7) is a type III enzyme forming ω-NG-monomethylated arginine residues. The Journal of Biological Chemistry, 287(11), 7859–7870. https://doi.org/10.1074/jbc.M111.336271

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.