152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Understanding the co-evolutionary molecular mechanisms of resistance in the HIV-1 Gag and protease

ORCID Icon &
Pages 10852-10861 | Received 09 Dec 2020, Accepted 28 Jun 2021, Published online: 12 Jul 2021

References

  • Agniswamy, J., Kneller, D. W., Brothers, R., Wang, Y.-F., Harrison, R. W., & Weber, I. T. (2019). Highly drug-resistant HIV-1 protease mutant PRS17 shows enhanced binding to substrate analogues. ACS Omega, 4(5), 8707–8719. https://doi.org/10.1021/acsomega.9b00683
  • Agniswamy, J., Louis, J. M., Shen, C.-H., Yashchuk, S., Ghosh, A. K., & Weber, I. T. (2015). Substituted Bis-THF protease inhibitors with improved potency against highly resistant mature HIV-1 protease PR20. Journal of Medicinal Chemistry, 58(12), 5088–5095. https://doi.org/10.1021/acs.jmedchem.5b00474
  • Agniswamy, J., Shen, C.-H., Wang, Y.-F., Ghosh, A. K., Rao, K. V., Xu, C.-H., Sayer, J. M., Louis, J. M., & Weber, I. T. (2013). Extreme multidrug resistant HIV-1 protease with 20 mutations is resistant to novel protease inhibitors with P1'-pyrrolidinone or P2-tris-tetrahydrofuran. Journal of Medicinal Chemistry, 56(10), 4017–4027. https://doi.org/10.1021/jm400231v
  • Arthur, D. E., & Uzairu, A. (2019). Molecular docking studies on the interaction of NCI anticancer analogues with human phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. Journal of King Saud University, Science, 31, 1151–1166. https://doi.org/10.1016/j.jksus.2019.01.011
  • Atkins, P., & de Paula, J. (2006). Physical chemistry for the life sciences (2nd ed., pp. 1–618). W.H. Freeman and Company.
  • Bharat, T. A. M., Menendez, L. R. C., Hagen, W. J. H., Lux, V., Igonet, S., Schorb, M., Schur, F. K. M., Kräusslich, H.-G., & Briggs, J. A. G. (2014). Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proceedings of the National Academy of Sciences of the United States of America, 22, 8233–8238.
  • Boender, T. S., Hamers, R. L., Ondoa, P., Wellington, M., Chimbetete, C., Siwale, M., Maksimos, E. E. F. L., Balinda, S. N., Kityo, C. M., Adeyemo, T. A., Akanmu, A. S., Mandaliya, K., Botes, M. E., Stevens, W., Rinke de Wit, T. F., & Sigaloff, K. C. E. (2016). Protease inhibitor resistance in the first 3 years of second-line antiretroviral therapy for HIV-1 in Sub-Saharan Africa. Journal of Infectious Diseases, 214(6), 873–883. https://doi.org/10.1093/infdis/jiw219
  • Borman, A. M., Paulous, S., & Clavel, F. (1996). Resistance of human immunodeficiency virus type 1 to protease inhibitors: Selection of resistance mutations in the presence and absence of the drug. Journal of General Virology, 77(3), 419–426. https://doi.org/10.1099/0022-1317-77-3-419
  • Brenk, R., Vetter, S. W., Boyce, S. E., Goodin, D. B., & Shoichet, B. K. (2006). Probing molecular docking in a charged model binding site. Journal of Molecular Biology, 357(5), 1449–14470. https://doi.org/10.1016/j.jmb.2006.01.034
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T. S., LeGrand, S., … Kollman, P. A. (2014). AMBER 14. University of California.
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Chen, J. M., Xu, S. L., Wawrzak, Z., Basarab, G. S., & Jordan, D. B. (1998). Structure-based design of potent inhibitors of scytalone dehydratase: Displacement of a water molecule from the active site. Biochemistry, 37(51), 17735–17744. https://doi.org/10.1021/bi981848r
  • Dam, E., Quercia, R., Glass, B., Descamps, D., Launay, O., Duval, X., Kräusslich, H.-G., Hance, A. J., & Clavel, F. (2009). Gag mutations strongly contribute to HIV-1 resistance to protease inhibitors in highly drug-experienced patients besides compensating for fitness loss. PLoS Pathogens, 5(3), e1000345. https://doi.org/10.1371/journal.ppat.1000345
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Fehér, A., Weber, I. T., Bagossi, P., Boross, P., Mahalingam, B., Louis, J. M., Copeland, T. D., Torshin, I. Y., Harrison, R. W., & Tözsér, J. (2002). Effect of sequence polymorphism and drug resistance on two HIV-1 Gag processing sites. European Journal of Biochemistry, 269(16), 4114–4120. https://doi.org/10.1046/j.1432-1033.2002.03105.x
  • Fun, A., Wensing, A. M. J., Verheyen, J., & Nijhuis, M. (2012). Human Immunodeficiency Virus Gag and protease: partners in resistance. Retrovirology, 9, 63. https://doi.org/10.1186/1742-4690-9-63
  • Giandhari, J., Basson, A. E., Coovadia, A., Kuhn, L., Abrams, E. J., Strehlau, R., Morris, L., & Hunt, G. M. (2015). Genetic changes in HIV-1 Gag-protease associated with protease inhibitor-based therapy failure in pediatric patients. AIDS Research and Human Retroviruses, 31(8), 776–782. https://doi.org/10.1089/AID.2014.0349
  • Goodchild, S. C., Curmi, P. M. G., & Brown, L. J. (2011). Structural gymnastics of multifunctional metamorphic proteins. Biophysical Reviews, 3(3), 143. https://doi.org/10.1007/s12551-011-0053-8
  • Gupta, R. K., Kohli, A., McCormick, A. L., Towers, G. J., Pillay, D., & Parry, C. M. (2010). Full-length HIV-1 Gag determines protease inhibitor susceptibility within in vitro assays. AIDS (London, England), 24(11), 1651–1655. https://doi.org/10.1097/qad.0b013e3283398216
  • Haspel, N., Moll, M., Baker, M. L., Chiu, W., & Kavraki, L. E. (2010). Tracing conformational changes in proteins. BMC Structural Biology, 10(Suppl 1), S1. https://doi.org/10.1186/1472-6807-10-S1-S1
  • Ho, S. K., Coman, R. M., Bunger, J. C., Rose, S. L., O'Brien, P., Munoz, I., Dunn, B. M., Sleasman, J. W., & Goodenow, M. M. (2008). Drug-associated changes in amino acid residues in Gag p2, p7NC, and p6Gag/p6Pol in human immunodeficiency virus type 1 (HIV-1) display a dominant effect on replicative fitness and drug response. Virology, 378(2), 272–281. https://doi.org/10.1016/j.virol.2008.05.029
  • Hou, T., Zhang, W., Wang, J., & Wang, W. (2009). Predicting drug resistance of the HIV-1 protease using molecular interaction energy components. Proteins, 74(4), 837–846. https://doi.org/10.1002/prot.22192
  • Hu, L., Huang, T., Liu, X.-J., & Cai, Y.-D. (2011). Predicting protein phenotypes based on protein-protein interaction network. PLoS One, 6(3), e17668. https://doi.org/10.1371/journal.pone.0017668
  • Huggins, D. J., & Tidor, B. (2011). Systematic placement of structural water molecules for improved scoring of protein-ligand interactions. Protein Engineering, Design & Selection: PEDS, 24(10), 777–789. https://doi.org/10.1093/protein/gzr036
  • Kantor, R., Zijenah, L. S., Shafer, R. W., Mutetwa, S., Johnston, E., Lloyd, R., von Lieven, A., Israelski, D., & Katzenstein, D. A. (2002). HIV-1 subtype C reverse transcriptase and protease genotypes in Zimbabwean patients failing antiretroviral therapy. AIDS Research and Human Retroviruses, 18(18), 1407–1413. https://doi.org/10.1089/088922202320935483
  • Kennedy, D. A., & Read, A. F. (2017). Why does drug resistance readily evolve but vaccine resistance does not? Proceedings of the Royal Society B: Biological Sciences, 284(1851), 20162562. https://doi.org/10.1098/rspb.2016.2562
  • Kiguoya, M. W., Mann, J. K., Chopera, D., Gounder, K., Lee, G. Q., Hunt, P. W., Martin, J. N., Ball, T. B., Kimani, J., Brumme, Z. L., Brockman, M. A., & Ndung’u, T. (2017). Subtype-specific differences in Gag- protease-driven replication capacity are consistent with intersubtype differences in HIV-1 disease progression. Journal of Virology, 91, e00253.
  • King, N. M., Prabu-Jeyabalan, M., Nalivaika, E. A., & Schiffer, C. A. (2004). Combating susceptibility to drug resistance: Lessons from HIV-1 protease. Chemistry & Biology, 11(10), 1333–1338. https://doi.org/10.1016/j.chembiol.2004.08.010
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, I. I T. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. [Database] https://doi.org/10.1021/ar000033j
  • Liu, F., Kovalevsky, A. Y., Tie, Y., Ghosh, A. K., Harrison, R. W., & Weber, I. T. (2008). Effect of flap mutations on structure of HIV-1 protease and inhibition by Saquinavir and Darunavir. Journal of Molecular Biology, 381(1), 102–115. https://doi.org/10.1016/j.jmb.2008.05.062
  • Louis, J. M., Zhang, Y., Sayer, J. M., Wang, Y.-F., Harrison, R. W., & Weber, I. T. (2011). The L76V drug resistance mutation decreases the dimer stability and rate of autoprocessing of HIV-1 protease by reducing internal hydrophobic contacts. Biochemistry, 50(21), 4786–4795. https://doi.org/10.1021/bi200033z
  • Lv, Z., Cju, Y., & Wang, Y. (2015). HIV protease inhibitors: A review of molecular selectivity and toxicity. HIV/AIDS Research and Palliative Care, 7, 95–104.
  • Malet, I., Roquebert, B., Dalban, C., Wirden, M., Amellal, B., Agher, R., Simon, A., Katlama, C., Costagliola, D., Calvez, V., & Marcelin, A. G. (2007). Association of Gag cleavage sites to protease mutations and to virological response in HIV-1 treated patients. Journal of Infection, 54(4), 367–374. https://doi.org/10.1016/j.jinf.2006.06.012
  • Marie, V., & Gordon, M. (2019). Gag-protease coevolution shapes the outcome of lopinavir-inclusive treatment regimens in chronically infected HIV-1 subtype C patients. Bioinformatics (Oxford, England), 35(18), 3219–3223. https://doi.org/10.1093/bioinformatics/btz076
  • Nakashima, M., Ode, H., Suzuki, K., Fujino, M., Maejima, M., Kimura, Y., Masaoka, T., Hattori, J., Matsuda, M., Hachiya, A., Yokomaku, Y., Suzuki, A., Watanabe, N., Sugiura, W., & Iwatani, Y. (2016). Unique flap conformation in an HIV-1 protease with high-level darunavir resistance. Frontiers in Microbiology, 7, 61. https://doi.org/10.3389/fmicb.2016.00061
  • Nguyen, Q. H., Contamin, L., Nguyen, T. V. A., & Bañuls, A.-L. (2018). Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evolutionary Applications, 11(9), 1498–1511. https://doi.org/10.1111/eva.12654
  • Nijhuis, M., Schuurman, R., de Jong, D., Erickson, J., Gustchina, E., Albert, J., Schipper, P., Gulnik, S., & Boucher, C. A. (1999). Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS (London, England), 13(17), 2349–2359. https://doi.org/10.1097/00002030-199912030-00006
  • Nijhuis, M., van Maarseveen, N. M., Lastere, S., Schipper, P., Coakley, E., Glass, B., Rovenska, M., de Jong, D., Chappey, C., Goedegebuure, I. W., Heilek-Snyder, G., Dulude, D., Cammack, N., Brakier- Gingras, L., Konvalinka, J., Parkin, N., Kräusslich, H.-G., Brun-Vezinet, F., & Boucher, C. A. B. (2007). A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Medicine, 4(1), e36. https://doi.org/10.1371/journal.pmed.0040036
  • Ning, J., Erdemci-Tandogan, G., Yufenyuy, E. L., Wagner, J., Himes, B. A., Zhao, G., Aiken, C., Zandi, R., & Zhang, P. (2016). In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway. Nature Communications, 7, 13689. https://doi.org/10.1038/ncomms13689
  • Özen, A., Haliloğlu, T., & Schiffer, C. A. (2011). Dynamics of preferential substrate recognition in HIV-1 protease: Redefining the substrate envelope. Journal of Molecular Biology, 410(4), 726–744. https://doi.org/10.1016/j.jmb.2011.03.053
  • Paredes, R., Tzou, P. L., van Zyl, G., Barrow, G., Camacho, R., Carmona, S., Grant, P. M., Gupta, R. K., Hamers, R. L., Harrigan, P. R., Jordan, M. R., Kantor, R., Katzenstein, D. A., Kuritzkes, D. R., Maldarelli, F., Otelea, D., Wallis, C. L., Schapiro, J. M., & Shafer, R. W. (2017). Collaborative update of a rule-based expert system for HIV-1 genotypic resistance test interpretation. PLoS One, 12(7), e0181357. https://doi.org/10.1371/journal.pone.0181357
  • Parry, C. M., Kohli, A., Boinett, C. J., Towers, G. J., McCormick, A. L., & Pillay, D. (2009). Gag determinants of fitness and drug susceptibility in protease inhibitor-resistant human immunodeficiency virus type 1. Journal of Virology, 83(18), 9094–9101. https://doi.org/10.1128/JVI.02356-08
  • Porter, L. L., & Looger, L. L. (2018). Extant fold-switching proteins are widespread. Proceedings of the National Academy of Sciences of the United States of America, 115(23), 5968–5973. https://doi.org/10.1073/pnas.1800168115
  • Prado, J. G., Wrin, T., Beauchaine, J., Ruiz, L., Petropoulos, C. J., Frost, S. D. W., Clotet, B., D'Aquila, R. T., & Martinez-Picado, J. (2002). Amprenavir-resistant HIV-1 exhibits Lopinavir cross-resistance and reduced replication capacity. AIDS (London, England), 16(7), 1009–1017. https://doi.org/10.1097/00002030-200205030-00007
  • Ragland, D. A., Nalivaika, E. A., Nalam, M. N. L., Prachanronarong, K. L., Cao, H., Bandaranayake, R. M., Cai, Y., Kurt-Yilmaz, N., & Schiffer, C. A. (2014). Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease. Journal of the American Chemical Society, 136(34), 11956–11963. https://doi.org/10.1021/ja504096m
  • Raugi, D. N., Smith, R. A., & Gottlieb, G. S. (2016). Four amino acid changes in HIV-2 protease confer class-wide sensitivity to protease inhibitors. Journal of Virology, 90(2), 1062–1069. https://doi.org/10.1128/JVI.01772-15
  • Rhee, S. Y., Gonzales, M. J., Kantor, R., Betts, B. J., Ravela, J., & Shafer, R. W. (2003). Human immunodeficiency virus reverse transcriptase and protease sequence database. Nucleic Acids Research, 31(1), 298–303. https://doi.org/10.1093/nar/gkg100
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-Alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Su, C. T.-T., Kwoh, C.-K., Verma, C. S., & Gan, S. K.-E. (2018). Modeling the full length HIV-1 Gag polyprotein reveals the role of its p6 subunit in viral maturation and the effect of non-cleavage site mutations in protease drug resistance. Journal of Biomolecular Structure & Dynamics, 36(16), 4366–4377. https://doi.org/10.1080/07391102.2017.1417160
  • Sundquist, W. I., & Kräusslich, H.-G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine, 2(7), a006924. https://doi.org/10.1101/cshperspect.a006924
  • Teto, G., Tagny, C. T., Mbanya, D., Fonsah, J. Y., Fokam, J., Nchindap, E., Kenmogne, L., Njamnshi, A. K., & Kanmogne, G. D. (2017). Gag P2/NC and pol genetic diversity, polymorphism, and drug resistance mutations in HIV-1 CRF02_AG- and non-CRF02_AG infected patients in Yaoundé, Cameroon. Scientific Reports, 7, 14136.
  • Verheyen, J., Litau, E., Sing, T., Däumer, M., Balduin, M., Oette, M., Fätkenheuer, G., Rockstroh, J. K., Schuldenzucker, U., Hoffmann, D., Pfister, H., & Kaiser, R. (2006). Compensatory mutations at the HIV cleavage sites p7/p1 and p1/p6-gag in therapy-naive and therapy-experienced patients. Antiviral Therapy, 11, 879–887.
  • Weber, I. T., & Agniswamy, J. (2009). HIV-1 protease: Structural perspectives on drug resistance. Viruses, 1(3), 1110–1136. https://doi.org/10.3390/v1031110
  • Wensing, A. M., Calvez, V., Günthard, H. F., Johnson, V. A., Paredes, R., Pillay, D., Shafer, R. W., & Richman, D. D. (2016). 2017 update of the drug resistance mutations in HIV-1. Topics in Antiviral Medicine, 24(4), 132–133.
  • Williams, A., Basson, A., Achilonu, I., Dirr, H. W., Morris, L., & Sayed, Y. (2019). Double trouble? Gag in conjunction with double insert in HIV protease contributes to reduced DRV susceptibility. The Biochemical Journal, 476(2), 375–384. https://doi.org/10.1042/BCJ20180692
  • Wong-Sam, A., Wang, Y.-F., Zhang, Y., Ghosh, A. K., Harrison, R. W., & Weber, I. T. (2018). Drug resistance mutation L76V alters nonpolar interactions at the flap-core interface of HIV-1 protease. ACS Omega, 3(9), 12132–12140. https://doi.org/10.1021/acsomega.8b01683
  • Young, T. P., Parkin, N. T., Stawiski, E., Pilot-Matias, T., Trinh, R., Kempf, D. J., & Norton, M. (2010). Prevalence, mutation patterns, and effects on protease inhibitor susceptibility of the L76V mutation in HIV-1 protease. Antimicrobial Agents and Chemotherapy, 54(11), 4903–4906. https://doi.org/10.1128/AAC.00906-10
  • Yu, Y., Wang, J., Shao, Q., Shi, J., & Zhu, W. (2015). Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Scientific Reports, 5, 10517.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.