174
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Polymorphisms at site 469 of B-RAF protein associated with skin melanoma may be correlated with dabrafenib resistance: An in silico study

, ORCID Icon & ORCID Icon
Pages 10862-10877 | Received 21 Feb 2021, Accepted 28 Jun 2021, Published online: 19 Jul 2021

References

  • Adeyemo, A., & Rotimi, C. (2010). Genetic variants associated with complex human diseases show wide variation across multiple populations. Public Health Genomics, 13(2), 72–79. https://doi.org/10.1159/000218711
  • Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using polyphen‐2. Current Protocols in Human Genetics, 76(1), 7.20.1–7.20.41. https://doi.org/10.1002/0471142905.hg0720s76
  • Aoude, L. G., Wadt, K. A. W., Pritchard, A. L., & Hayward, N. K. (2015). Genetics of familial melanoma: 20 years after CDKN2A. Pigment Cell & Melanoma Research, 28(2), 148–160. https://doi.org/10.1111/pcmr.12333
  • Bateman, A., Martin, M. J., O’Donovan, C., Magrane, M., Alpi, E., Antunes, R., Bely, B., Bingley, M., Bonilla, C., Britto, R., Bursteinas, B., Bye-AJee, H., Cowley, A., Da Silva, A., De Giorgi, M., Dogan, T., Fazzini, F., Castro, L. G., Figueira, L., … Zhang, J. (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45, D158–D169. https://doi.org/10.1093/nar/gkw1099
  • Bhardwaj, V. K., & Purohit, R. (2021). Targeting the protein–protein interface pocket of Aurora-A–TPX2 complex: Rational drug design and validation. Journal of Biomolecular Structure & Dynamics, 39(11), 3882–3891. https://doi.org/10.1080/07391102.2020.1772109
  • Bhatia, P., Friedlander, P., Zakaria, E. A., & Kandil, E. (2015). Impact of BRAF mutation status in the prognosis of cutaneous melanoma: An area of ongoing research. Annals of Translational Medicine, 3(2), 24. https://doi.org/10.3978/j.issn.2305-5839.2014.12.05
  • Cannon-Albright, L., Goldgar, D., Meyer, L., Lewis, C., Anderson, D., Fountain, J., Hegi, M., Wiseman, R., Petty, E., Bale, A., & Et, A. (1992). Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science (New York, N.Y.), 258(5085), 1148–1152. https://doi.org/10.1126/science.1439824
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6
  • Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., & Karchin, R. (2013). Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics, 14(Suppl 3), S3. https://doi.org/10.1186/1471-2164-14-S3-S3
  • Casadei Gardini, A., Chiadini, E., Faloppi, L., Marisi, G., Delmonte, A., Scartozzi, M., Loretelli, C., Lucchesi, A., Oboldi, D., Dubini, A., Frassineti, G. L., & Ulivi, P. (2016). Efficacy of sorafenib in BRAF-mutated nonsmall-cell lung cancer (NSCLC) and no response in synchronous BRAF wild type hepatocellular carcinoma: A case report. BMC Cancer, 16(1), 429. https://doi.org/10.1186/s12885-016-2463-2
  • Chakraborty, R., Gupta, H., Rahman, R., & Hasija, Y. (2018). In silico analysis of nsSNPs in ABCB1 gene affecting breast cancer associated protein P-glycoprotein (P-gp). Computational Biology and Chemistry, 77, 430–441. https://doi.org/10.1016/j.compbiolchem.2018.08.004
  • Chudnovsky, Y., Khavari, P. A., & Adams, A. E. (2005). Melanoma genetics and the development of rational therapeutics. The Journal of Clinical Investigation, 115(4), 813–824. https://doi.org/10.1172/JCI24808
  • Ciccarese, G., Dalmasso, B., Bruno, W., Queirolo, P., Pastorino, L., Andreotti, V., Spagnolo, F., Tanda, E., Ponti, G., Massone, C., Drago, F., Parodi, A., Ghigliotti, G., Pizzichetta, M. A., & Ghiorzo, P. (2020). Clinical, pathological and dermoscopic phenotype of MITF p.E318K carrier cutaneous melanoma patients. Journal of Translational Medicine, 18(1), 78. https://doi.org/10.1186/s12967-020-02253-8
  • Cutler, R. E., Stephens, R. M., Saracino, M. R., & Morrison, D. K. (1998). Autoregulation of the Raf-1 serine/threonine kinase. Proceedings of the National Academy of Sciences of the United States of America, 95(16), 9214–9219. https://doi.org/10.1073/pnas.95.16.9214
  • Dankner, M., Lajoie, M., Moldoveanu, D., Nguyen, T.-T., Savage, P., Rajkumar, S., Huang, X., Lvova, M., Protopopov, A., Vuzman, D., Hogg, D., Park, M., Guiot, M.-C., Petrecca, K., Mihalcioiu, C., Watson, I. R., Siegel, P. M., & Rose, A. A. N. (2018). Dual MAPK inhibition is an effective therapeutic strategy for a subset of Class II BRAF mutant melanomas. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(24), 6483–6494. https://doi.org/10.1158/1078-0432.CCR-17-3384
  • Davies, H., Bignell, G. R., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., … Futreal, P. A. (2002). Mutations of the BRAF gene in human cancer. Nature, 417(6892), 949–954. https://doi.org/10.1038/nature00766
  • Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., McMorran, R., Wiegers, J., Wiegers, T. C., & Mattingly, C. J. (2019). The comparative toxicogenomics database: Update 2019. Nucleic Acids Research, 47(D1), D948–D954. https://doi.org/10.1093/nar/gky868
  • Davis, A. P., Grondin, C. J., Lennon-Hopkins, K., Saraceni-Richards, C., Sciaky, D., King, B. L., Wiegers, T. C., & Mattingly, C. J. (2015). The comparative toxicogenomics database's 10th year anniversary: Update 2015. Nucleic Acids Research, 43(Database issue), D914–D920. https://doi.org/10.1093/nar/gku935
  • Fedorenko, I. V., Gibney, G. T., & Smalley, K. S. M. (2013). NRAS mutant melanoma: Biological behavior and future strategies for therapeutic management. Oncogene, 32(25), 3009–3018. https://doi.org/10.1038/onc.2012.453
  • Forbes, S. A., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C. Y., Jia, M., De, T., Teague, J. W., Stratton, M. R., McDermott, U., & Campbell, P. J. (2015). COSMIC: Exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Research, 43(Database issue), D805–D811. https://doi.org/10.1093/nar/gku1075
  • Gautschi, O., Peters, S., Zoete, V., Aebersold-Keller, F., Strobel, K., Schwizer, B., Hirschmann, A., Michielin, O., & Diebold, J. (2013). Lung adenocarcinoma with BRAF G469L mutation refractory to vemurafenib. Lung Cancer (Amsterdam, Netherlands), 82(2), 365–367. https://doi.org/10.1016/j.lungcan.2013.08.012
  • Gilchrest, B. A., Eller, M. S., Geller, A. C., & Yaar, M. (1999). The pathogenesis of melanoma induced by ultraviolet radiation. The New England Journal of Medicine, 340(17), 1341–1348. https://doi.org/10.1056/NEJM199904293401707
  • Goel, V. K., Lazar, A. J. F., Warneke, C. L., Redston, M. S., & Haluska, F. G. (2006). Examination of mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. Journal of Investigative Dermatology, 126(1), 154–160. https://doi.org/10.1038/sj.jid.5700026
  • Gopalakrishnan, C., Kamaraj, B., & Purohit, R. (2014). Mutations in microRNA binding sites of CEP genes involved in cancer. Cell Biochemistry and Biophysics, 70(3), 1933–1942. https://doi.org/10.1007/s12013-014-0153-8
  • Hartman, M. L., & Czyz, M. (2015). MITF in melanoma: Mechanisms behind its expression and activity. Cellular and Molecular Life Sciences: CMLS, 72(7), 1249–1260. https://doi.org/10.1007/s00018-014-1791-0
  • Herraiz, C., Garcia-Borron, J. C., Jiménez-Cervantes, C., & Olivares, C. (2017). MC1R signaling. Intracellular partners and pathophysiological implications. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1863(10 Pt A), 2448–2461. https://doi.org/10.1016/j.bbadis.2017.02.027
  • Hofer, S., Berthod, G., Riklin, C., Rushing, E., & Feilchenfeldt, J. (2016). BRAF V600E mutation: A treatable driver mutation in pleomorphic xanthoastrocytoma (PXA). Acta Oncologica (Stockholm, Sweden), 55(1), 122–123. https://doi.org/10.3109/0284186X.2015.1021428
  • Horn, S., Figl, A., Rachakonda, P. S., Fischer, C., Sucker, A., Gast, A., Kadel, S., Moll, I., Nagore, E., Hemminki, K., Schadendorf, D., & Kumar, R. (2013). TERT promoter mutations in familial and sporadic melanoma. Science (New York, N.Y.), 339(6122), 959–961. https://doi.org/10.1126/science.1230062
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hugdahl, E., Kalvenes, M. B., Mannelqvist, M., Ladstein, R. G., & Akslen, L. A. (2018). Prognostic impact and concordance of TERT promoter mutation and protein expression in matched primary and metastatic cutaneous melanoma. British Journal of Cancer, 118(1), 98–105. https://doi.org/10.1038/bjc.2017.384
  • Hussussian, C. J., Struewing, J. P., Goldstein, A. M., Higgins, P. A. T., Ally, D. S., Sheahan, M. D., Clark, W. H., Tucker, M. A., & Dracopoli, N. C. (1994). Germline p16 mutations in familial melanoma. Nature Genetics, 8(1), 15–21. https://doi.org/10.1038/ng0994-15
  • Jabbarzadeh Kaboli, P., Ismail, P., & Ling, K.-H. (2018). Molecular modeling, dynamics simulations, and binding efficiency of berberine derivatives: A new group of RAF inhibitors for cancer treatment. PLOS One, 13(3), e0193941. https://doi.org/10.1371/journal.pone.0193941
  • Kamaraj, B., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013). In-silico screening of cancer associated mutation on PLK1 protein and its structural consequences. Journal of Molecular Modeling, 19(12), 5587–5599. https://doi.org/10.1007/s00894-013-2044-0
  • Kumar, A., & Purohit, R. (2013). Cancer associated E17K mutation causes rapid conformational drift in AKT1 pleckstrin homology (PH) domain. PLoS One, 8(5), e64364. https://doi.org/10.1371/journal.pone.0064364
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013a). AKT kinase pathway: A leading target in cancer research. The Scientific World Journal, 2013, 756134. https://doi.org/10.1155/2013/756134
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013b). Computational investigation of cancer-associated molecular mechanism in aurora A (S155R) mutation. Cell Biochemistry and Biophysics, 66(3), 787–796. https://doi.org/10.1007/s12013-013-9524-9
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013c). Evidence of colorectal cancer-associated mutation in MCAK: A computational report. Cell Biochemistry and Biophysics, 67(3), 837–851. https://doi.org/10.1007/s12013-013-9572-1
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2013d). Identifying novel oncogenes: A machine learning approach. Interdisciplinary Sciences, Computational Life Sciences, 5(4), 241–246. https://doi.org/10.1007/s12539-013-0151-3
  • Kumar, A., Rajendran, V., Sethumadhavan, R., & Purohit, R. (2014). Relationship between a point mutation S97C in CK1δ protein and its affect on ATP-binding affinity. Journal of Biomolecular Structure & Dynamics, 32(3), 394–405. https://doi.org/10.1080/07391102.2013.770373
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Lindahl, Abraham, Hess, & Spoel, V. D. (2020). GROMACS 2020.3 Manual. https://doi.org/10.5281/ZENODO.3923644
  • Liu, L., Mayes, P. A., Eastman, S., Shi, H., Yadavilli, S., Zhang, T., Yang, J., Seestaller-Wehr, L., Zhang, S.-Y., Hopson, C., Tsvetkov, L., Jing, J., Zhang, S., Smothers, J., & Hoos, A. (2015). The BRAF and MEK inhibitors dabrafenib and trametinib: Effects on immune function and in combination with immunomodulatory antibodies targeting PD-1, PD-L1, and CTLA-4. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(7), 1639–1651. https://doi.org/10.1158/1078-0432.CCR-14-2339
  • Livingston, R. J., von Niederhausern, A., Jegga, A. G., Crawford, D. C., Carlson, C. S., Rieder, M. J., Gowrisankar, S., Aronow, B. J., Weiss, R. B., & Nickerson, D. A. (2004). Pattern of sequence variation across 213 environmental response genes. Genome Research, 14(10A), 1821–1831. https://doi.org/10.1101/gr.2730004
  • Masica, D. L., Douville, C., Tokheim, C., Bhattacharya, R., Kim, R., Moad, K., Ryan, M. C., & Karchin, R. (2017). CRAVAT 4: Cancer-related analysis of variants toolkit. Cancer Res, 77(21), e35–e38. https://doi.org/10.1158/0008-5472.CAN-17-0338
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). UNIT using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14.1–8.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • Ng, P. C., & Henikoff, S. (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Research, 31(13), 3812–3814. https://doi.org/10.1093/nar/gkg509
  • Niroula, A., Urolagin, S., & Vihinen, M. (2015). PON-P2: Prediction method for fast and reliable identification of harmful variants. PLOS One, 10(2), e0117380. https://doi.org/10.1371/journal.pone.0117380
  • Orlow, I., Shi, Y., Kanetsky, P. A., Thomas, N. E., Luo, L., Corrales-Guerrero, S., Cust, A. E., Sacchetto, L., Zanetti, R., Rosso, S., Armstrong, B. K., Dwyer, T., Venn, A., Gallagher, R. P., Gruber, S. B., Marrett, L. D., Anton-Culver, H., Busam, K., Begg, C. B., & Berwick, M. (2018). The interaction between vitamin D receptor polymorphisms and sun exposure around time of diagnosis influences melanoma survival. Pigment Cell & Melanoma Research, 31(2), 287–296. https://doi.org/10.1111/pcmr.12653
  • P, S., D, T. K., C, G. P. D., R, S., & Zayed, H. (2017). Determining the role of missense mutations in the POU domain of HNF1A that reduce the DNA-binding affinity: A computational approach. PLOS One, 12(4), e0174953. https://doi.org/10.1371/journal.pone.0174953
  • Patel, H., Yacoub, N., Mishra, R., White, A., Yuan, L., Alanazi, S., & Garrett, J. T. (2020). Current advances in the treatment of BRAF-mutant melanoma. Cancers, 12(2), 482. https://doi.org/10.3390/cancers12020482
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H.-J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2020). Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nature Communications, 11(1), 5918. https://doi.org/10.1038/s41467-020-19669-x
  • Pejaver, V., Urresti, J., Lugo-Martinez, J., Pagel, K. A., Lin, G. N., Nam, H. J., Mort, M., Cooper, D. N., Sebat, J., Iakoucheva, L. M., Mooney, S. D., & Radivojac, P. (2017). MutPred2: Inferring the molecular and phenotypic impact of amino acid variants. bioRxiv, 9, 291–297. https://doi.org/10.1101/134981
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics (Oxford, England), 30(3), 335–342. https://doi.org/10.1093/bioinformatics/btt691
  • Pirooznia, M., Nagarajan, V., & Deng, Y. (2007). GeneVenn – A web application for comparing gene lists using Venn diagrams. Bioinformation, 1(10), 420–422. https://doi.org/10.6026/97320630001420
  • Rae, J. M., Skaar, T. C., Hilsenbeck, S. G., & Oesterreich, S. (2008). The role of single nucleotide polymorphisms in breast cancer metastasis. Breast Cancer Research: BCR, 10(1), 301. https://doi.org/10.1186/bcr1842
  • Raimondi, S., Suppa, M., & Gandini, S. (2020). Melanoma epidemiology and sun exposure. Acta Dermato Venereologica, 100(11), adv00136. https://doi.org/10.2340/00015555-3491
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(11), 15293–15304. https://doi.org/10.1007/s13277-016-5329-y
  • Reger de Moura, C., Vercellino, L., Jouenne, F., Baroudjian, B., Sadoux, A., Louveau, B., Delyon, J., Serror, K., Goldwirt, L., Merlet, P., Bouquet, F., Battistella, M., Lebbé, C., & Mourah, S. (2020). Intermittent versus continuous dosing of MAPK inhibitors in the treatment of BRAF-mutated melanoma. Translational Oncology, 13(2), 275–286. https://doi.org/10.1016/j.tranon.2019.10.003
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118. https://doi.org/10.1093/nar/gkr407
  • Rieder, M. J., Livingston, R. J., Stanaway, I. B., & Nickerson, D. A. (2008). The environmental genome project: Reference polymorphisms for drug metabolism genes and genome-wide association studies. Drug Metabolism Reviews, 40(2), 241–261. https://doi.org/10.1080/03602530801952880
  • S, U. K., R, B., D, T. K., Doss, C. G. P., & Zayed, H. (2020). Mutational landscape of K-Ras substitutions at 12th position-a systematic molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 9, 1–15. https://doi.org/10.1080/07391102.2020.1830177
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Scheurer, M., Rodenkirch, P., Siggel, M., Bernardi, R. C., Schulten, K., Tajkhorshid, E., & Rudack, T. (2018). PyContact: Rapid, customizable, and visual analysis of noncovalent interactions in MD simulations. Biophysical Journal, 114(3), 577–583. https://doi.org/10.1016/j.bpj.2017.12.003
  • SeattleSNPs. (n.d.). Retrieved December 29, 2020, from https://pga.gs.washington.edu/
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Singh, R., Bhardwaj, V. K., Sharma, J., Das, P., & Purohit, R. (2021). Discovery and in silico evaluation of aminoarylbenzosuberene molecules as novel checkpoint kinase 1 inhibitor determinants. Genomics, 113(1), 707–715. https://doi.org/10.1016/j.ygeno.2020.10.001
  • Tang, H., & Thomas, P. D. (2016). PANTHER-PSEP: Predicting disease-causing genetic variants using position-specific evolutionary preservation. Bioinformatics (Oxford, England), 32(14), 2230–2232. https://doi.org/10.1093/bioinformatics/btw222
  • Tanwar, G., & Purohit, R. (2019). Gain of native conformation of Aurora A S155R mutant by small molecules. Journal of Cellular Biochemistry, 120(7), 11104–11114. https://doi.org/10.1002/jcb.28387
  • Thirumal Kumar, D., Jerushah Emerald, L., George Priya Doss, C., Sneha, P., Siva, R., Charles Emmanuel Jebaraj, W., & Zayed, H. (2018). Computational approach to unravel the impact of missense mutations of proteins (D2HGDH and IDH2) causing D-2-hydroxyglutaric aciduria 2. Metabolic Brain Disease, 33(5), 1699–1710. https://doi.org/10.1007/s11011-018-0278-3
  • Thirumal Kumar, D., Udhaya Kumar, S., Magesh, R., & George Priya Doss, C. (2021). Investigating mutations at the hotspot position of the ERBB2 and screening for the novel lead compound to treat breast cancer – A computational approach. Advances in Protein Chemistry and Structural Biology. https://doi.org/10.1016/bs.apcsb.2020.10.001
  • Valdivielso, J. M., & Fernandez, E. (2006). Vitamin D receptor polymorphisms and diseases. Clinica Chimica Acta; International Journal of Clinical Chemistry, 371(1–2), 1–12. https://doi.org/10.1016/j.cca.2006.02.016
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Waizenegger, I. C., Baum, A., Steurer, S., Stadtmüller, H., Bader, G., Schaaf, O., Garin-Chesa, P., Schlattl, A., Schweifer, N., Haslinger, C., Colbatzky, F., Mousa, S., Kalkuhl, A., Kraut, N., & Adolf, G. R. (2016). A novel RAF kinase inhibitor with DFG-out-binding mode: High efficacy in BRAF-mutant tumor xenograft models in the absence of normal tissue hyperproliferation . Molecular Cancer Therapeutics, 15(3), 354–365. https://doi.org/10.1158/1535-7163.MCT-15-0617
  • Wan, P. T. C., Garnett, M. J., Roe, S. M., Lee, S., Niculescu-Duvaz, D., Good, V. M., Project, C. G., Jones, C. M., Marshall, C. J., Springer, C. J., Barford, D., & Marais, R. (2004). Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell, 116(6), 855–867. https://doi.org/10.1016/S0092-8674(04)00215-6
  • Wei, C.-H., Allot, A., Leaman, R., & Lu, Z. (2019). PubTator central: Automated concept annotation for biomedical full text articles. Nucleic Acids Research, 47(W1), W587–W593. https://doi.org/10.1093/nar/gkz389
  • Williams, P. F., Olsen, C. M., Hayward, N. K., & Whiteman, D. C. (2011). Melanocortin 1 receptor and risk of cutaneous melanoma: A meta-analysis and estimates of population burden. International Journal of Cancer, 129(7), 1730–1740. https://doi.org/10.1002/ijc.25804
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., … Wilson, M. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082. https://doi.org/10.1093/nar/gkx1037
  • Zuo, L., Weger, J., Yang, Q., Goldstein, A. M., Tucker, M. A., Walker, G. J., Hayward, N., & Dracopoli, N. C. (1996). Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nature Genetics, 12(1), 97–99. https://doi.org/10.1038/ng0196-97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.