370
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches

, , , &
Pages 10812-10820 | Received 08 Jun 2021, Accepted 26 Jun 2021, Published online: 11 Jul 2021

References

  • Nuclear and Kinetoplast DNA Replication in Trypanosomatids | Bentham Science.
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Al-Shar'i, N. A., Al-Balas, Q. A., Al-Waqfi, R. A., Hassan, M. A., Alkhalifa, A. E., & Ayoub, N. M. (2019). Discovery of a nanomolar inhibitor of the human glyoxalase-I enzyme using structure-based poly-pharmacophore modelling and molecular docking. Journal of Computer-Aided Molecular Design, 33(9), 799–815. https://doi.org/10.1007/s10822-019-00226-8
  • Arya, H., & Coumar, M. S. (2014). Virtual screening of traditional Chinese medicine (TCM) database: Identification of fragment-like lead molecules for filariasis target asparaginyl-tRNA synthetase. Journal of Molecular Modeling, 20(6), 2266–2213. https://doi.org/10.1007/s00894-014-2266-9
  • Arya, H., Coumar, M. S., & Bhatt, T. K. (2021). Introduction of structural bioinformatics with respect to drug discovery. In T. K. Bhatt & S. Nimesh (Eds.), The design & development of novel drugs and vaccines (pp. 3–9). Elsevier.
  • Bhatt, T. K., & Nimesh, S. (2021). The design and development of novel drugs and vaccines: Principles and protocols. Elsevier Science.
  • Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2020). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics, 1–15.
  • Biswas, T., Resto-Roldan, E., Sawyer, S. K., Artsimovitch, I., & Tsodikov, O. V. (2013). A novel non-radioactive primase-pyrophosphatase activity assay and its application to the discovery of inhibitors of Mycobacterium tuberculosis primase DnaG. Nucleic Acids Research, 41(4), e56. https://doi.org/10.1093/nar/gks1292
  • Bray, P. G., Barrett, M. P., Ward, S. A., & De Koning, H. P. (2003). Pentamidine uptake and resistance in pathogenic protozoa: Past, present and future. Trends in Parasitology, 19, 232–239.
  • Camacho, E., Rastrojo, A., Sanchiz, Á., González-de la Fuente, S., Aguado, B., & Requena, J. M. (2019). Leishmania mitochondrial genomes: Maxicircle structure and heterogeneity of minicircles. Genes, 10(10), 758. https://doi.org/10.3390/genes10100758
  • Carvalho, S. F. G., Vieira, T. M., Moura, A. P. V., & Andrade, M. C. (2020). Should an intersection between visceral leishmaniasis endemicity and the COVID-19 pandemic be considered? Medical Hypotheses, 144, 110289. https://doi.org/10.1016/j.mehy.2020.110289
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Georgiadou, S. P., Makaritsis, K. P., & Dalekos, G. N. (2015). Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. Journal of Translational Internal Medicine, 3(2), 43–50. https://doi.org/10.1515/jtim-2015-0002
  • Gillies, P. S., & Dunn, C. J. (2000). Pioglitazone. Drugs , 60(2), 333–343. https://doi.org/10.2165/00003495-200060020-00009
  • Goto, H., & Lindoso, J. A. L. (2012). Cutaneous and mucocutaneous leishmaniasis. Infectious Disease Clinics, 26, 293–307.
  • Halgren, T. A. (2009). Identifying and characterizing binding sites and assessing druggability. Journal of Chemical Information and Modeling, 49(2), 377–389. https://doi.org/10.1021/ci800324m
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Herwaldt, B. L. (1999). Leishmaniasis. The Lancet, 354, 1191–1199.
  • Hines, J. C., & Ray, D. S. (2010). A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei. Molecular and Cellular Biology, 30(6), 1319–1328. https://doi.org/10.1128/MCB.01231-09
  • Hines, J. C., & Ray, D. S. (2011). A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei. Eukaryotic Cell, 10, 445–454.
  • Jhingran, A., Chawla, B., Saxena, S., Barrett, M. P., & Madhubala, R. (2009). Paromomycin: Uptake and resistance in Leishmania donovani. Molecular and Biochemical Parasitology, 164, 111–117.
  • Kumar, A., Pandey, S. C., & Samant, M. (2018). Slow pace of antileishmanial drug development. Parasitology Open, 4. https://doi.org/10.1017/pao.2018.1
  • Lanzetta, P. A., Alvarez, L. J., Reinach, P. S., & Candia, O. A. (1979). An improved assay for nanomole amounts of inorganic phosphate. Analytical Biochemistry, 100(1), 95–97. https://doi.org/10.1016/0003-2697(79)90115-5
  • Maltezou, H. C. (2009). Drug resistance in visceral leishmaniasis. Journal of Biomedicine and Biotechnology, 2010
  • Martínez de Iturrate, P., Sebastián-Pérez, V., Nácher-Vázquez, M., Tremper, C. S., Smirlis, D., Martín, J., Martínez, A., Campillo, N. E., Rivas, L., & Gil, C. (2020). Towards discovery of new leishmanicidal scaffolds able to inhibit Leishmania GSK-3. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 199–210. https://doi.org/10.1080/14756366.2019.1693704
  • Mishra, J., & Singh, S. (2013). Miltefosine resistance in Leishmania donovani involves suppression of oxidative stress-induced programmed cell death. Experimental Parasitology, 135, 397–406.
  • Pandey, R. K., Sharma, D., Bhatt, T. K., Sundar, S., & Prajapati, V. K. (2015). Developing imidazole analogues as potential inhibitor for Leishmania donovani trypanothione reductase: Virtual screening, molecular docking, dynamics and ADMET approach. Journal of Biomolecular Structure & Dynamics, 33(12), 2541–2553. https://doi.org/10.1080/07391102.2015.1085904
  • Pandey, R. K., Verma, P., Sharma, D., Bhatt, T. K., Sundar, S., & Prajapati, V. K. (2016). High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 83, 141–152. https://doi.org/10.1016/j.biopha.2016.06.010
  • Pitt, W. R., Calmiano, M. D., Kroeplien, B., Taylor, R. D., Turner, J. P., & King, M. A. (2013). Structure-based virtual screening for novel ligands. In M. A. Williams & T. Daviter (Eds.), Protein-ligand interactions (pp. 501–519). Springer.
  • Pulvertaft, R. J. V. (1960). Stages in the life-cycle of Leishmania donovani. Transactions of the Royal Society of Tropical Medicine and Hygiene, 54, 191–192.
  • Purkait, B., Kumar, A., Nandi, N., Sardar, A. H., Das, S., Kumar, S., Pandey, K., Ravidas, V., Kumar, M., De, T., Singh, D., & Das, P. (2012). Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy, 56(2), 1031–1041. https://doi.org/10.1128/AAC.00030-11
  • Rai, P., Arya, H., & Kumar, D. (2021). Protein purification and desalting. In T. K. Bhatt & S. Nimesh (Eds.), The design & development of novel drugs and vaccines (pp. 181–201). Elsevier.
  • Rai, P., Singh, S., & Nimesh, S. (2021). Biological assay. In T. K. Bhatt & S. Nimesh (Eds.), The design & development of novel drugs and vaccines (pp. 203–210). Elsevier.
  • Reithinger, R., Dujardin, J.-C., Louzir, H., Pirmez, C., Alexander, B., & Brooker, S. (2007). Cutaneous leishmaniasis. The Lancet Infectious Diseases, 7, 581–596.
  • Ribeiro, N. Q., Santos, A. P. N., Emídio, E. C. P., Costa, M. C., Freitas, G. J. C., Carmo, P. H. F., Silva, M. F., de Brito, C. B., de Souza, D. G., Paixão, T. A., & Santos, D. A. (2019). Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. International Journal of Antimicrobial Agents, 54(3), 301–308. https://doi.org/10.1016/j.ijantimicag.2019.06.020
  • Sarwono, A. E. Y., Mitsuhashi, S., Kabir, M. H. B., Shigetomi, K., Okada, T., Ohsaka, F., Otsuguro, S., Maenaka, K., Igarashi, M., Kato, K., & Ubukata, M. (2019). Repurposing existing drugs: Identification of irreversible IMPDH inhibitors by high-throughput screening. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 171–178. https://doi.org/10.1080/14756366.2018.1540474
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Sharma, D., Dada, R., Tejavath, K. K., Rai, P., Soni, R., Yaragorla, S., & Bhatt, T. K. (2020). A paradigm towards the antimalarial quest: In silico identification and biological evaluation of novel inhibitors targeting 1-deoxy-D-xylulose-5-phosphate reductoisomerase. Journal of Biomolecular Structure & Dynamics, 38(1), 295–301. https://doi.org/10.1080/07391102.2019.1570342
  • Sundar, S. (2001). Drug resistance in Indian visceral leishmaniasis. Tropical Medicine & International Health : TM & IH, 6(11), 849–854. https://doi.org/10.1046/j.1365-3156.2001.00778.x
  • Sundar, S., & Chatterjee, M. (2006). Visceral leishmaniasis-current therapeutic modalities. Indian Journal of Medical Research, 123, 345.
  • Tekin, S., & Hansen, P. J. (2001). Use of the Bradford protein assay in a microtiter plate format. Department of.
  • Turner, P. (2005). XMGRACE, version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • van Griensven, J., & Diro, E. (2012). Visceral leishmaniasis. Infectious Disease Clinics, 26, 309–322.
  • WHO. (2016). Leishmaniasis.
  • Zijlstra, E., Musa, A., Khalil, E., El Hassan, I., & El-Hassan, A. (2003). Post-kala-azar dermal leishmaniasis. The Lancet. Infectious Diseases, 3(2), 87–98. https://doi.org/10.1016/S1473-3099(03)00517-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.