1,370
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Protein degradation: a novel computational approach to design protein degrader probes for main protease of SARS-CoV-2

, &
Pages 10905-10917 | Received 11 Feb 2021, Accepted 02 Jul 2021, Published online: 30 Jul 2021

References

  • Adams, G. P., & Weiner, L. M. (2005). Monoclonal antibody therapy of cancer. Nature Biotechnology, 23(9), 1147–1157. https://doi.org/10.1038/nbt1137
  • Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O'Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L., Das, R., Baker, D., Kuhlman, B., Kortemme, T., & Gray, J. J. (2017). The Rosetta all-atom energy function for macromolecular modeling and design. Journal of Chemical Theory and Computation, 13(6), 3031–3048. https://doi.org/10.1021/acs.jctc.7b00125
  • Anson, B. J., Chapman, M. E., Lendy, E. K., Pshenychnyi, S., Richard, T., Satchell, K. J., & Mesecar, A. D. (2020). Broad-spectrum inhibition of coronavirus main and papain-like proteases by HCV drugs.
  • Bai, N., Miller, S. A., Andrianov, G. V., Yates, M., Kirubakaran, P., & Karanicolas, J. (2021). Rationalizing PROTAC-mediated ternary complex formation using Rosetta. Journal of Chemical Information and Modeling, 61(3), 1368–1382. https://doi.org/10.1021/acs.jcim.0c01451
  • Baker, J. D., Uhrich, R. L., Kraemer, G. C., Love, J. E., & Kraemer, B. C. (2021). A drug repurposing screen identifies hepatitis C antivirals as inhibitors of the SARS-CoV2 main protease. PLoS One, 16(2), e0245962. https://doi.org/10.1371/journal.pone.0245962
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117.
  • Bondeson, D. P., Mares, A., Smith, I. E. D., Ko, E., Campos, S., Miah, A. H., Mulholland, K. E., Routly, N., Buckley, D. L., Gustafson, J. L., Zinn, N., Grandi, P., Shimamura, S., Bergamini, G., Faelth-Savitski, M., Bantscheff, M., Cox, C., Gordon, D. A., Willard, R. R., … Crews, C. M. (2015). Catalytic in vivo protein knockdown by small-molecule PROTACs. Nature Chemical Biology, 11(8), 611–617. https://doi.org/10.1038/nchembio.1858
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing.
  • Buhimschi, A. D., Armstrong, H. A., Toure, M., Jaime-Figueroa, S., Chen, T. L., Lehman, A. M., Woyach, J. A., Johnson, A. J., Byrd, J. C., & Crews, C. M. (2018). Targeting the C481S ibrutinib-resistance mutation in Bruton's tyrosine kinase using PROTAC-mediated degradation. Biochemistry, 57(26), 3564–3575. https://doi.org/10.1021/acs.biochem.8b00391
  • Chaudhury, S., Berrondo, M., Weitzner, B. D., Muthu, P., Bergman, H., & Gray, J. J. (2011). Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS One, 6(8), e22477. https://doi.org/10.1371/journal.pone.0022477
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P. D., Wu, X., Jiang, W., Marraffini, L. A., & Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science (New York, N.Y.), 339(6121), 819–823. https://doi.org/10.1126/science.1231143
  • Cromm, P. M., Samarasinghe, K. T., Hines, J., & Crews, C. M. (2018). Addressing kinase-independent functions of Fak via PROTAC-mediated degradation. Journal of the American Chemical Society, 140(49), 17019–17026. https://doi.org/10.1021/jacs.8b08008
  • de Wispelaere, M., Du, G., Donovan, K. A., Zhang, T., Eleuteri, N. A., Yuan, J. C., Kalabathula, J., Nowak, R. P., Fischer, E. S., & Gray, N. S. (2019). Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nature Communications, 10, 1–11.
  • Drummond, M. L., Henry, A., Li, H., & Williams, C. I. (2020). Improved accuracy for modeling PROTAC-mediated ternary complex formation and targeted protein degradation via new in silico methodologies. Journal of Chemical Information and Modeling, 60(10), 5234–5254. https://doi.org/10.1021/acs.jcim.0c00897
  • Drummond, M. L., & Williams, C. I. (2019). In silico modeling of PROTAC-mediated ternary complexes: Validation and application. Journal of Chemical Information and Modeling, 59(4), 1634–1644. https://doi.org/10.1021/acs.jcim.8b00872
  • Flanagan, J., Qian, Y., Gough, S., Andreoli, M., Bookbinder, M., Cadelina, G., Bradley, J., Rousseau, E., Chandler, J., & Willard, R. (2018). ARV‐471, an oral estrogen receptor PROTAC™ protein degrader for breast cancer. ARV, 1000, 3.
  • Freitas, B. T., Durie, I. A., Murray, J., Longo, J. E., Miller, H. C., Crich, D., Hogan, R. J., Tripp, R. A., & Pegan, S. D. (2020). Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infectious Diseases, 6(8), 2099–2109. [10.1021/acsinfecdis.0c00168]
  • Gadd, M. S., Testa, A., Lucas, X., Chan, K.-H., Chen, W., Lamont, D. J., Zengerle, M., & Ciulli, A. (2017). Structural basis of PROTAC cooperative recognition for selective protein degradation. Nature Chemical Biology, 13(5), 514–521. https://doi.org/10.1038/nchembio.2329
  • Gildenhuys, S. (2020). Expanding our understanding of the role polyprotein conformation plays in the coronavirus life cycle. The Biochemical Journal, 477(8), 1479–1482. https://doi.org/10.1042/BCJ20200223%J Biochemical Journal.
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., & Swaney, D. L. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468.
  • Hannon, G. J. (2002). RNA interference. Nature, 418(6894), 244–251. https://doi.org/10.1038/418244a
  • Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479. https://doi.org/10.1146/annurev.biochem.67.1.425
  • Jin, Y. H., Lu, M. C., Wang, Y., Shan, W. X., Wang, X. Y., You, Q. D., & Jiang, Z. Y. (2020). Azo-PROTAC: Novel light-controlled small-molecule tool for protein knockdown. Journal of Medicinal Chemistry, 63(9), 4644–4654. https://doi.org/10.1021/acs.jmedchem.9b02058
  • Kneller, D. W., Galanie, S., Phillips, G., O'Neill, H. M., Coates, L., & Kovalevsky, A. (2020). Malleability of the SARS-CoV-2 3CL Mpro active site cavity facilitates binding of clinical antivirals. Structure (London, England : 1993), 28(12), 1313–1320.e3. https://doi.org/10.1016/j.str.2020.10.007
  • Kounde, C. S., Shchepinova, M. M., Saunders, C. N., Muelbaier, M., Rackham, M. D., Harling, J. D., & Tate, E. W. (2020). A caged E3 ligase ligand for PROTAC-mediated protein degradation with light. Chemical Communications (Cambridge, England), 56(41), 5532–5535. https://doi.org/10.1039/d0cc00523a
  • Lamb, Y. N. (2020). Remdesivir: First approval. Drugs, 80(13), 1355–1359. https://doi.org/10.1007/s40265-020-01378-w
  • Leaver-Fay, A., Tyka, M., Lewis, S. M., Lange, O. F., Thompson, J., Jacak, R., Kaufman, K., Renfrew, P. D., Smith, C. A., Sheffler, W., Davis, I. W., Cooper, S., Treuille, A., Mandell, D. J., Richter, F., Ban, Y.-E A., Fleishman, S. J., Corn, J. E., Kim, D. E., … Bradley, P. (2011). ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods in Enzymology, 487, 545–574. https://doi.org/10.1016/B978-0-12-381270-4.00019-6
  • Lebraud, H., Wright, D. J., Johnson, C. N., & Heightman, T. D. (2016). Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Central Science, 2(12), 927–934. https://doi.org/10.1021/acscentsci.6b00280
  • Liu, J., Chen, H., Ma, L., He, Z., Wang, D., Liu, Y., Lin, Q., Zhang, T., Gray, N., Kaniskan, H. Ü., Jin, J., & Wei, W. (2020). Light-induced control of protein destruction by opto-PROTAC. Science Advances, 6(8), eaay5154. https://doi.org/10.1126/sciadv.aay5154
  • Liu, Y., Liang, C., Xin, L., Ren, X., Tian, L., Ju, X., Li, H., Wang, Y., Zhao, Q., Liu, H., Cao, W., Xie, X., Zhang, D., Wang, Y., & Jian, Y. (2020). The development of Coronavirus 3C-Like protease (3CLpro) inhibitors from 2010 to 2020. European Journal of Medicinal Chemistry, 206, 112711. https://doi.org/10.1016/j.ejmech.2020.112711
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Martinez-Ortiz, W., & Zhou, M.-M. (2020). Could PROTACs protect us from COVID-19? Drug Discovery Today., 25(11), 1894–1896. https://doi.org/10.1016/j.drudis.2020.08.007
  • Mevissen, T. E., & Komander, D. (2017). Mechanisms of deubiquitinase specificity and regulation. Annual Review of Biochemistry, 86, 159–192. https://doi.org/10.1146/annurev-biochem-061516-044916
  • Neklesa, T., Snyder, L. B., Willard, R. R., Vitale, N., Pizzano, J., Gordon, D. A., Bookbinder, M., Macaluso, J., Dong, H., Ferraro, C., Wang, G., Wang, J., Crews, C. M., Houston, J., Crew, A. P., & Taylor, I. (2019). ARV-110: An oral androgen receptor PROTAC degrader for prostate cancer. Journal of Clinical Oncology, 37(7_suppl), 259–259. https://doi.org/10.1200/JCO.2019.37.7_suppl.259
  • Neklesa, T. K., Winkler, J. D., & Crews, C. M. (2017). Targeted protein degradation by PROTACs. Pharmacology & Therapeutics, 174, 138–144. https://doi.org/10.1016/j.pharmthera.2017.02.027
  • Nguyen, D. D., Gao, K., Chen, J., Wang, R., & Wei, G.-W. (2020). Unveiling the molecular mechanism of SARS-CoV-2 main protease inhibition from 137 crystal structures using algebraic topology and deep learning. Chemical Science, 11(44), 12036–12046. https://doi.org/10.1039/d0sc04641h
  • Nowak, R. P., DeAngelo, S. L., Buckley, D., He, Z., Donovan, K. A., An, J., Safaee, N., Jedrychowski, M. P., Ponthier, C. M., Ishoey, M., Zhang, T., Mancias, J. D., Gray, N. S., Bradner, J. E., & Fischer, E. S. (2018). Plasticity in binding confers selectivity in ligand-induced protein degradation. Nature Chemical Biology, 14(7), 706–714. https://doi.org/10.1038/s41589-018-0055-y
  • Paik, Y.-K., Jeong, S.-K., Omenn, G. S., Uhlen, M., Hanash, S., Cho, S. Y., Lee, H.-J., Na, K., Choi, E.-Y., Yan, F., Zhang, F., Zhang, Y., Snyder, M., Cheng, Y., Chen, R., Marko-Varga, G., Deutsch, E. W., Kim, H., Kwon, J.-Y., … Hancock, W. S. (2012). The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nature Biotechnology, 30(3), 221–223. https://doi.org/10.1038/nbt.2152
  • Pettersson, M., & Crews, C. M. (2019). PROteolysis TArgeting Chimeras (PROTACs)—Past, present and future. Drug Discovery Today: Technologies, 31, 15–27. https://doi.org/10.1016/j.ddtec.2019.01.002
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(11), 15293–15304. https://doi.org/10.1007/s13277-016-5329-y.
  • Rajendran, V., Gopalakrishnan, C., & Sethumadhavan, R. (2018). Pathological role of a point mutation (T315I) in BCR-ABL1 protein-A computational insight. Journal of Cellular Biochemistry, 119(1), 918–925.https://doi.org/10.1002/jcb.26257.
  • Reynders, M., Matsuura, B. S., Bérouti, M., Simoneschi, D., Marzio, A., Pagano, M., & Trauner, D. (2020). PHOTACs enable optical control of protein degradation. Science Advances, 6(8), eaay5064. https://doi.org/10.1126/sciadv.aay5064.
  • Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., Burgstaller-Muehlbacher, S., De Jesus, P. D., Teriete, P., Hull, M. V., Chang, M. W., Chan, J. F.-W., Cao, J., Poon, V. K.-M., Herbert, K. M., Cheng, K., Nguyen, T.-T H., Rubanov, A., Pu, Y., … Chanda, S. K. (2020). Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 586(7827), 113–119. https://doi.org/10.1038/s41586-020-2577-1
  • Sakamoto, K. M., Kim, K. B., Kumagai, A., Mercurio, F., Crews, C. M., Deshaies, R. J. (2001). Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 98: 8554–8559. https://doi.org/10.1073/pnas.141230798.
  • Sang, P., Tian, S.-H., Meng, Z.-H., & Yang, L.-Q. (2020). Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 10(27), 15775–15783. https://doi.org/10.1039/D0RA01899F
  • Schlagenhauf, P., Grobusch, M. P., Maier, J. D., & Gautret, P. (2020). Repurposing antimalarials and other drugs for COVID-19. Travel Med Infect Dis, 34, 101658. https://doi.org/10.1016/j.tmaid.2020.101658
  • Testa, A., Hughes, S. J., Lucas, X., Wright, J. E., & Ciulli, A. (2020). Structure‐based design of a macrocyclic PROTAC. Angewandte Chemie (International ed. In English), 59(4), 1727–1734. https://doi.org/10.1002/anie.201914396
  • Trezza, A., Iovinelli, D., Santucci, A., Prischi, F., & Spiga, O. (2020). An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-70863-9
  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515.
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–w330. https://doi.org/10.1093/nar/gkz397.
  • WHO. (2021). Weekly Epidemiological Update – 29 June 2021. Retrieved June 30, from https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19–-29-june-2021.
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067.
  • Wu, R., Wang, L., Kuo, H.-C D., Shannar, A., Peter, R., Chou, P. J., Li, S., Hudlikar, R., Liu, X., Liu, Z., Poiani, G. J., Amorosa, L., Brunetti, L., & Kong, A.-N. (2020). An update on current therapeutic drugs treating COVID-19. Current Pharmacology Reports, 6(3), 56–70. https://doi.org/10.1007/s40495-020-00216-7
  • Xue, G., Wang, K., Zhou, D., Zhong, H., & Pan, Z. (2019). Light-induced protein degradation with photocaged PROTACs. Journal of the American Chemical Society, 141(46), 18370–18374. https://doi.org/10.1021/jacs.9b06422.
  • Zaidman, D., Prilusky, J., & London, N. (2020). PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. Journal of Chemical Information and Modeling, 60(10), 4894–4903. https://doi.org/10.1021/acs.jcim.0c00589
  • Zhou, H., Bai, L., Xu, R., Zhao, Y., Chen, J., McEachern, D., Chinnaswamy, K., Wen, B., Dai, L., Kumar, P., Yang, C.-Y., Liu, Z., Wang, M., Liu, L., Meagher, J. L., Yi, H., Sun, D., Stuckey, J. A., & Wang, S. (2019). Structure-based discovery of SD-36 as a potent, selective, and efficacious PROTAC degrader of STAT3 protein. Journal of Medicinal Chemistry, 62(24), 11280–11300. https://doi.org/10.1021/acs.jmedchem.9b01530
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6(1), 1–18. https://doi.org/10.1038/s41421-020-0153-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.