514
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

HSA nanoparticles in drug recognition: mechanistic insights with naproxen, diclofenac and methimazole

ORCID Icon & ORCID Icon
Pages 11057-11069 | Received 09 Jun 2021, Accepted 05 Jul 2021, Published online: 23 Jul 2021

References

  • Abbasi, S., Paul, A., Shao, W., & Prakash, S. (2012). Cationic albumin nanoparticles for enhanced drug delivery to treat breast cancer: Preparation and in vitro assessment. Journal of Drug Delivery, 2012(2012), 686108. https://doi.org/10.1155/2012/686108
  • Ahsan, S. M., Rao, C. M., & Ahmad, M. F. (2018). Nanoparticle–protein interaction: The significance and role of protein corona. Advances in Experimental Medicine and Biology, 1048, 175–198. https://doi.org/10.1007/978-3-319-72041-8_11
  • AlBab, N. D., Hameed, M. K., Maresova, A., Ahmady, I. M., Arooj, M., Han, C., Workie, B., Chehimi, M., & Mohamed, A. A. (2020). Inhibition of amyloid fibrillation, enzymatic degradation and cytotoxicity of insulin at carboxyl tailored gold–aryl nanoparticles surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124279. https://doi.org/10.1016/j.colsurfa.2019.124279
  • Bou-Abdallah, F., Sprague, S. E., Smith, B. M., & Giffune, T. R. (2016). Binding thermodynamics of Diclofenac and Naproxen with human and bovine serum albumins: A calorimetric and spectroscopic study. Journal of Chemical Thermodynamics, 103, 299–309. https://doi.org/10.1016/j.jct.2016.08.020
  • Cabaleiro-Lago, C., Quinlan-Pluck, F., Lynch, I., Lindman, S., Minogue, A. M., Thulin, E., Walsh, D. M., Dawson, K., & Linse, A. S. (2008). Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles. Journal of the American Chemical Society, 130(46), 15437–15443. https://doi.org/10.1021/ja8041806
  • Cheng, Z., Al Zaki, A., Hui, J. Z., Muzykantov, V., & Tsourkas, R. A. (2012). Multifunctional nanoparticles: Cost versus benefit of adding targeting and imaging capabilities. Science (New York, N.Y.), 338(6109), 903–910. https://doi.org/10.1126/science.1226338
  • Csikós, Z., Kerekes, K., Fazekas, E., Kun, S., & Borbély, J. (2017). Biopolymer based nanosystem for doxorubicin targeted delivery. American Journal of Cancer Research, 7(3), 715–726.
  • Dobrovolskaia, M. A., Patri, A. K., Zheng, J., Clogston, J. D., Ayub, N., Aggarwal, P., Neun, B. W., Hall, J. B., & McNeil, S. E. (2009). Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomedicine: Nanotechnology, Biology, and Medicine, 5(2), 106–117. https://doi.org/10.1016/j.nano.2008.08.001
  • Elzoghby, A. O., Samy, W. M., & Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release: Official Journal of the Controlled Release Society, 157(2), 168–182. https://doi.org/10.1016/j.jconrel.2011.07.031
  • Esim, O., & Hascicek, C. (2021). Albumin-based nanoparticles as promising drug delivery systems for cancer treatment. Current Pharmaceutical Analysis, 17(3), 346–359. https://doi.org/10.2174/1573412916999200421142008
  • Ezpeleta, I., Irache, J. M., Stainmesse, S., Chabenat, C., Gueguen, J., Popineau, Y., & Orecchioni, A.-M. (1996). Gliadin nanoparticles for the controlled release of all-trans-retinoic acid. International Journal of Pharmaceutics, 131(2), 191–200. https://doi.org/10.1016/0378-5173(95)04338-1
  • Ge, L., You, X., Huang, J., Chen, Y., Chen, L., Zhu, Y., Zhang, Y., Liu, X., Wu, Q., & Hai, J. (2018). Human albumin fragments nanoparticles as PTX carrier for improved anti-cancer efficacy. Frontiers in Pharmacology, 9, 582. https://doi.org/10.3389/fphar.2018.00582
  • Gelperina, S., Kisich, K., Iseman, M., & Heifets, D. L. (2005). The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 172(12), 1487–1490. https://doi.org/10.1164/rccm.200504-613PP
  • Gong, J., Chen, M., Zheng, Y., Wang, S., & Wang, S. Y. (2012). Polymeric micelles drug delivery system in oncology. Journal of Controlled Release: Official Journal of the Controlled Release Society, 159(3), 312–323. https://doi.org/10.1016/j.jconrel.2011.12.012
  • Guo, L., Peng, Y., Yao, J., Sui, L., Gu, A., & Wang, J. (2010). Anticancer activity and molecular mechanism of resveratrol – Bovine serum albumin nanoparticles on subcutaneously implanted human primary ovarian carcinoma cells in Nude mice. Cancer Biotherapy and Radiopharmaceuticals, 25(4), 471–477. https://doi.org/10.1089/cbr.2009.0724
  • Joshi, M., Nagarsenkar, M., & Prabhakar, B. (2020). Albumin nanocarriers for pulmonary drug delivery: An attractive approach. Journal of Drug Delivery Science and Technology, 56, 101529. https://doi.org/10.1016/j.jddst.2020.101529
  • Karami, E., Behdani, M., & Kazemi-Lomedasht, F. (2020). Albumin nanoparticles as nanocarriers for drug delivery: Focusing on antibody and nanobody delivery and albumin-based drugs. Journal of Drug Delivery Science and Technology, 55, 101471. https://doi.org/10.1016/j.jddst.2019.101471
  • Kardos, J., Yamamoto, K., Hasegawa, K., Naiki, H., & Goto, Y. (2004). Direct measurement of the thermodynamic parameters of amyloid formation by isothermal titration calorimetry. The Journal of Biological Chemistry, 279(53), 55308–55314. https://doi.org/10.1074/jbc.M409677200
  • Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., Shahreza, S., Sori, M., & Hamblin, M. R. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion on Drug Delivery, 13(11), 1609–1623. https://doi.org/10.1080/17425247.2016.1193149
  • Keck, C. M., & Müller, R. H. (2013). Nanotoxicological classification system (NCS) – A guide for the risk–benefit assessment of nanoparticulate drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 84(3), 445–448. https://doi.org/10.1016/j.ejpb.2013.01.001
  • Kobayashi, K. (2006). Summary of recombinant human serum albumin development. Biologicals: Journal of the International Association of Biological Standardization, 34(1), 55–59. https://doi.org/10.1016/j.biologicals.2005.08.021
  • Lakowicz, J. R. (2013). Principles of fluorescence spectroscopy. Springer Science & Business Media.
  • Lang, B. E., & Cole, K. D. (2015). Unfolding properties of recombinant human serum albumin products are due to bioprocessing steps. Biotechnology Progress, 31(1), 62–69. https://doi.org/10.1002/btpr.1996
  • Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., & Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257(1–2), 169–180. https://doi.org/10.1016/S0378-5173(03)00134-0
  • Löffler, B.-M., & Kunze, H. (1989). Refinement of the Coomassie brilliant blue G assay for quantitative protein determination. Analytical Biochemistry, 177(1), 100–102. https://doi.org/10.1016/0003-2697(89)90021-3
  • Lohcharoenkal, W., Wang, L., Chen, Y., & Rojanasakul, C. Y. (2014). Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Research International, 2014, 1–12. https://doi.org/10.1155/2014/180549
  • Mahmoudi, M., Lynch, I., Ejtehadi, M. R., Monopoli, M. P., Bombelli, F., & Laurent, B. S. (2011). Protein–nanoparticle interactions: Opportunities and challenges. Chemical Reviews, 111(9), 5610–5637. https://doi.org/10.1021/cr100440g
  • Makhatadze, G. I., & Privalov, P. L. (1995). Energetics of protein structure. In C. B. Anfinsen, F. M. Richards, J. T. Edsall, & D. S. Eisenberg (Eds.) Advances in Protein Chemistry (Vol. 47, pp. 307–425). Academic Press..
  • Meesaragandla, B., Karanth, S., Janke, U., & Delcea, M. (2020). Biopolymer-coated gold nanoparticles inhibit human insulin amyloid fibrillation. Scientific Reports, 10(1), 1–14. https://doi.org/10.1038/s41598-020-64010-7
  • Mirzazadeh Dizaji, N., Mohammad-Beigi, H., Aliakbari, F., Marvian, A. T., Shojaosadati, S., & Morshedi, A. D. (2016). Inhibition of lysozyme fibrillation by human serum albumin nanoparticles: Possible mechanism. International Journal of Biological Macromolecules, 93(Pt A), 1328–1336. https://doi.org/10.1016/j.ijbiomac.2016.09.108
  • Mudshinge, S. R., Deore, A. B., Patil, S., & Bhalgat, C. M. (2011). Nanoparticles: Emerging carriers for drug delivery. Saudi Pharmaceutical Journal: SPJ : The Official Publication of the Saudi Pharmaceutical Society, 19(3), 129–141. https://doi.org/10.1016/j.jsps.2011.04.001
  • Müller, B. G., Leuenberger, H., & Kissel, T. (1996). Albumin nanospheres as carriers for passive drug targeting: An optimized manufacturing technique. Pharmaceutical Research, 13(1), 32–37.
  • Parveen, R., Shamsi, T., & Fatima, N. S. (2017). Nanoparticles–protein interaction: Role in protein aggregation and clinical implications. International Journal of Biological Macromolecules, 94(Pt A), 386–395. https://doi.org/10.1016/j.ijbiomac.2016.10.024
  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. d P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8
  • Petersson, L., & Oksman, K. (2006). Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Composites Science and Technology, 66(13), 2187–2196. https://doi.org/10.1016/j.compscitech.2005.12.010
  • Piella, J., Bastús, N., & Puntes, G. V. (2017). Size-dependent protein–nanoparticle interactions in citrate-stabilized gold nanoparticles: The emergence of the protein corona . Bioconjugate Chemistry, 28(1), 88–97. https://doi.org/10.1021/acs.bioconjchem.6b00575
  • Prabhu, N. V., & Sharp, K. A. (2005). Heat capacity in proteins. Annual Review of Physical Chemistry, 56, 521–548. https://doi.org/10.1146/annurev.physchem.56.092503.141202
  • Radomski, A., Jurasz, P., Alonso‐Escolano, D., Drews, M., Morandi, M., Malinski, T., & Radomski, M. W. (2005). Nanoparticle-induced platelet aggregation and vascular thrombosis . British Journal of Pharmacology, 146(6), 882–893. https://doi.org/10.1038/sj.bjp.0706386
  • Radu, D. R., Lai, C.-Y., Jeftinija, K., Rowe, E. W., Jeftinija, S., & Lin, V. S.-Y. (2004). A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society, 126(41), 13216–13217. https://doi.org/10.1021/ja046275m
  • Ritz, S., Schöttler, S., Kotman, N., Baier, G., Musyanovych, A., Kuharev, J., Landfester, K., Schild, H., Jahn, O., Tenzer, S., & Mailänder, V. (2015). Protein corona of nanoparticles: Distinct proteins regulate the cellular uptake. Biomacromolecules, 16(4), 1311–1321. https://doi.org/10.1021/acs.biomac.5b00108
  • Rollett, A., Reiter, T., Nogueira, P., Cardinale, M., Loureiro, A., Gomes, A., Cavaco-Paulo, A., Moreira, A., Carmo, A. M., & Guebitz, G. M. (2012). Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages. International Journal of Pharmaceutics, 427(2), 460–466. https://doi.org/10.1016/j.ijpharm.2012.02.028
  • Singh, S., & Kishore, K. N. (2008). Calorimetric and spectroscopic studies on the interaction of methimazole with bovine serum albumin. Journal of Pharmaceutical Sciences, 97(6), 2362–2372. https://doi.org/10.1002/jps.21140
  • Sung, A. D., Yen, R. C., Jiao, Y., Bernanke, A., Lewis, D. A., Miller, S. E., Li, Z., Ross, J. R., Artica, A., Piryani, S., Zhou, D., Liu, Y., Vo-Dinh, T., Hoffman, M., Ortel, T. L., Chao, N. J., & Chen, B. J. (2020). Fibrinogen-coated albumin nanospheres prevent thrombocytopenia-related bleeding. Radiation Research, 194(2), 162. https://doi.org/10.1667/RADE-20-00016
  • Tarhini, M., Pizzoccaro, A., Benlyamani, I., Rebaud, C., Greige-Gerges, H., Fessi, H., Elaissari, A., & Bentaher, A. A. (2020). Human serum albumin nanoparticles as nanovector carriers for proteins: Application to the antibacterial proteins “neutrophil elastase” and “secretory leukocyte protease inhibitor”. International Journal of Pharmaceutics, 579, 119150. https://doi.org/10.1016/j.ijpharm.2020.119150
  • Wang, T., Zhang, D., Sun., & Gu, D. J. (2020). Current status of in vivo bioanalysis of nano drug delivery systems. Journal of Pharmaceutical Analysis, 10(3), 221–232. https://doi.org/10.1016/j.jpha.2020.05.002
  • Wigginton, N. S., Titta, A. d., Piccapietra, F., Dobias, J. A. N., Nesatyy, V. J., Suter, M. J., & Bernier-Latmani, F. R. (2010). Binding of silver nanoparticles to bacterial proteins depends on surface modifications and inhibits enzymatic activity. Environmental Science & Technology, 44(6), 2163–2168. https://doi.org/10.1021/es903187s
  • Xue, C., Lin, T. Y., Chang, D., & Guo, Z. (2017). Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 4(1), 160696–160696. https://doi.org/10.1098/rsos.160696
  • Yoo, S. I., Yang, M., Brender, J. R., Subramanian, V., Sun, K., Joo, N. E., Jeong, S. H., Ramamoorthy, A., & Kotov, N. A. (2011). Inhibition of amyloid peptide fibrillation by inorganic nanoparticles: Functional similarities with proteins. Angewandte Chemie (International ed. in English), 50(22), 5110–5115. https://doi.org/10.1002/anie.201007824
  • Yuan, H., Guo, H., Luan, X., He, M., Li, F., Burnett, J., Truchan, N., & Sun, D. (2020). Albumin nanoparticle of paclitaxel (Abraxane) decreases while taxol increases breast cancer stem cells in treatment of triple negative breast cancer. Molecular Pharmaceutics, 17(7), 2275–2286. https://doi.org/10.1021/acs.molpharmaceut.9b01221
  • Yuan, Y., Li, H., Zhu, J., Liu, C., Sun, X., Wang, D., & Xu, Y. (2020). Fabrication and characterization of zein nanoparticles by dextran sulfate coating as vehicles for delivery of curcumin. International Journal of Biological Macromolecules, 151, 1074–1083. https://doi.org/10.1016/j.ijbiomac.2019.10.149
  • Zaman, M., Ahmad, E., Qadeer, A., Rabbani, G., & Khan, R. H. (2014). Nanoparticles in relation to peptide and protein aggregation. International Journal of Nanomedicine, 9, 899–912. https://doi.org/10.2147/IJN.S54171

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.