153
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Structure-function correlations and system dynamics in oxygenic photosynthesis: classical perspectives and murburn precepts

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10997-11023 | Received 31 May 2021, Accepted 04 Jul 2021, Published online: 29 Jul 2021

References

  • Albertsson, P.-Å., Hsu, B.-D., Tang, G. M.-S., & Arnon, D. I. (1983). Photosynthetic electron transport from water to NADP driven by photosystem II in inside-out chloroplast vesicles. Proceedings of the National Academy of Sciences of the United States of America, 80(13), 3971–3975. https://doi.org/10.1073/pnas.80.13.3971
  • Alberty, R. A. (2003). Thermodynamics of biochemical reactions. Wiley.
  • Ananyev, G., Roy-Chowdhury, S., Gates, C., Fromme, P., & Dismukes, G. C. (2019). The catalytic cycle of water oxidation in crystallized photosystem II complexes: Performance and requirements for formation of intermediates. ACS Catalysis, 9(2), 1396–1407. https://doi.org/10.1021/acscatal.8b04513
  • Andrew, D. G., Hager, L. P., & Manoj, K. M. (2011). The intriguing enhancement of chloroperoxidase mediated one-electron oxidations by azide, a known active-site ligand. Biochemical and Biophysical Research Communications, 415(4), 646–649. https://doi.org/10.1016/j.bbrc.2011.10.128
  • Arnon, D. I. (1995). Divergent pathways of photosynthetic electron transfer: The autonomous oxygenic and anoxygenic photosystems. Photosynthesis Research, 46(1–2), 47–71. https://doi.org/10.1007/BF00020416
  • Arnon, D. I., & Barber, J. (1990). Photoreduction of NADP + by isolated reaction centers of photosystem II: Requirement for plastocyanin. Proceedings of the National Academy of Sciences of the United States of America, 87(15), 5930–5934. https://doi.org/10.1073/pnas.87.15.5930
  • Arnon, D. I., Tsujimoto, H. Y., & Tang, G. M.-S. (1980). Contrasts between oxygenic and anoxygenic photoreduction of ferredoxin: Incompatibilities with prevailing concepts of photosynthetic electron transport. Proceedings of the National Academy of Sciences of the United States of America, 77(5), 2676–2680. https://doi.org/10.1073/pnas.77.5.2676
  • Arnon, D. I., Tsujimoto, H. Y., & Tang, G. M.-S. (1981). Proton transport in photooxidation of water: A new perspective on photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 78(5), 2942–2946. https://doi.org/10.1073/pnas.78.5.2942
  • Asada, K. (2006). Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiology, 141(2), 391–396. https://doi.org/10.1104/pp.106.082040
  • Askerka, M., Brudvig, G. W., & Batista, V. S. (2017). The O2-evolving complex of photosystem II: Recent insights from quantum mechanics/molecular mechanics (QM/MM), extended X-ray absorption fine structure (EXAFS), and femtosecond X-ray crystallography data. Accounts of Chemical Research, 50(1), 41–48. https://doi.org/10.1021/acs.accounts.6b00405
  • Balamurugan, M., Saravanan, N., Ha, H., Lee, Y. H., & Nam, K. T. (2018). Involvement of high-valent manganese-oxo intermediates in oxidation reactions: Realisation in nature, nano and molecular systems. Nano Convergence, 5(1), 18. https://doi.org/10.1186/s40580-018-0150-5
  • Bankura, A., & Chandra, A. (2012). Hydroxide ion can move faster than an excess proton through one-dimensional water chains in hydrophobic narrow pores. The Journal of Physical Chemistry. B, 116(32), 9744–9757. https://doi.org/10.1021/jp301466e
  • Barber, J. (1995). Short-circuiting the Z-scheme. Nature, 376(6539), 388–389. https://doi.org/10.1038/376388a0
  • Batie, C. J., & Kamin, H. (1986). Association of ferredoxin-NADP + reductase with NADP(H) specificity and oxidation-reduction properties. Journal of Biological Chemistry, 261(24), 11214–11223. https://doi.org/10.1016/S0021-9258(18)67370-3
  • Bazhin, N. M. (2020). Standard and transformed values of Gibbs energy formation for some radicals and ions involved in biochemical reactions. Archives of Biochemistry and Biophysics, 686, 108282. https://doi.org/10.1016/j.abb.2020.108282
  • Bennoun, P. (1972/1975). Thesis. University of Paris.
  • Benson, S. L., Maheswaran, P., Ware, M. A., Hunter, C. N., Horton, P., Jansson, S., Ruban, A. V., & Johnson, M. P. (2015). An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis. Nature Plants, 1, 15176. https://doi.org/10.1038/nplants.2015.176
  • Berg, J., Tymoczko, J., Stryer, L., & Stryer, L. (2007). Biochemistry. W.H. Freeman.
  • Berg, S. P., & Krogmann, D. W. (1975). Mechanism of KCN inhibition of photosystem I. Journal of Biological Chemistry, 250(23), 8957–8962. https://doi.org/10.1016/S0021-9258(19)40678-9
  • Bishop, N. I., & Spikes, J. D. (1955). Inhibition by cyanide of the photochemical activity of isolated chloroplasts. Nature, 176(4476), 307–308. https://doi.org/10.1038/176307a0
  • Blackwell, M., Gibas, C., Gygax, S., Roman, D., & Wagner, B. (1994). The plastoquinone diffusion coefficient in chloroplasts and its mechanistic implications. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1183(3), 533–543. https://doi.org/10.1016/0005-2728(94)90081-7
  • Blinks, L. R. (1960). Action spectra of chromatic transients and the Emerson effect in marine algae. Proceedings of the National Academy of Sciences of the United States of America, 46(3), 327–333. https://doi.org/10.1073/pnas.46.3.327
  • Bouges, B. B., Bennoun, P., & Taboury, J. (1973). Deactivation of oxygen precursors in presence of DCMU and phenylurethane. Biochimica et Biophysica Acta, 325(2), 247–254. https://doi.org/10.1016/0005-2728(73)90100-X
  • Boyer, P. D. (1963). Phosphohistidine. Science (New York, N.Y.), 141(3586), 1147–1153. https://doi.org/10.1126/science.141.3586.1147
  • Charles Dismukes, G. and van Willigen, R. T. (2005). Manganese: The oxygen-evolving complex & models based in part on the article manganese: Oxygen-evolving complex & models by Lars-Erik Andréasson & Tore Vänngård which appeared in the Encyclopedia of Inorganic Chemistry, First Edition. In R. B. King, R. H. Crabtree, C. M. Lukehart, D. A. Atwood, & R. A. Scott (Eds.), Encyclopedia of inorganic chemistry. Wiley.
  • Cox, N., Pantazis, D. A., & Lubitz, W. (2020). Current understanding of the mechanism of water oxidation in photosystem II and its relation to XFEL data. Annual Review of Biochemistry, 89, 795–820. https://doi.org/10.1146/annurev-biochem-011520-104801
  • Danielsson, R., Albertsson, P.-Å., Mamedov, F., & Styring, S. (2004). Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. Biochimica et Biophysica Acta, 1608(1), 53–61. https://doi.org/10.1016/j.bbabio.2003.10.005
  • Dau, H., & Haumann, M. (2008). The manganese complex of Photosystem II in its reaction cycle: Basic framework and possible realization at the atomic level. Coordination Chemistry Reviews, 252(3–4), 273–295. https://doi.org/10.1016/j.ccr.2007.09.001
  • Emerson, R., Chalmers, R., & Cederstrand, C. (1957). Some factors influencing the long-wave limit of photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 43(1), 133–143. https://doi.org/10.1073/pnas.43.1.133
  • Fernández-Velasco, J. G., Jamshidi, A., Gong, X. S., Zhou, J., & Ueng, R. Y. (2001). Photosynthetic electron transfer through the cytochrome b6f complex can bypass cytochrome f. The Journal of Biological Chemistry, 276(33), 30598–30607. https://doi.org/10.1074/jbc.M102241200
  • Forbush, B., Kok, B., & McGloin, M. (1971). Cooperation of charges in photosynthetic O2 evolution- 1. Damping of flash yield oscillation, deactivation. Photochemistry and Photobiology, 14(3), 307–321. https://doi.org/10.1111/j.1751-1097.1971.tb06175.x
  • Forti, G., & Gerola, P. (1977). Inhibition of photosynthesis by azide and cyanide and the role of oxygen in photosynthesis. Plant Physiology, 59(5), 859–862. https://doi.org/10.1104/pp.59.5.859
  • Foyer, G. H. (2018). Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environmental and Experimental Botany, 154, 134–142. https://doi.org/10.1016/j.envexpbot.2018.05.003
  • Fromme, P., Jordan, P., & Krauß, N. (2001). Structure of photosystem I. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1507(1–3), 5–31. https://doi.org/10.1016/S0005-2728(01)00195-5
  • Gade, S. K., Bhattacharya, S., & Manoj, K. M. (2012). Redox active molecules cytochrome c and vitamin C enhance heme-enzyme peroxidations by serving as non-specific agents for redox relay. Biochemical and Biophysical Research Communications, 419(2), 211–214. https://doi.org/10.1016/j.bbrc.2012.01.149
  • Gideon, D. A., Jacob, V. D., & Manoj, K. M. (2019). Murburn concept heralds a new era in cellular bioenergetics. Biomedical Reviews, 30(0), 89–98. https://doi.org/10.14748/bmr.v30.6390
  • Gideon, D. A., Kumari, R., Lynn, A. M., & Manoj, K. M. (2012). What is the functional role of N-terminal transmembrane helices in the metabolism mediated by liver microsomal cytochrome P450 and its reductase? Cell Biochemistry and Biophysics, 63(1), 35–45. https://doi.org/10.1007/s12013-012-9339-0
  • Gideon, D. A., Nirusimhan, V., Jesucastin, E., Karthik, S., & Sudarsha Manoj, K. M. (2021). Mechanism of electron transfers mediated by cytochromes c and b5 in mitochondria and endoplasmic reticulum: Classical and murburn perspectives. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1925154
  • Gideon, D. A., Nirusimhan, V., & Manoj, K. M. (2020). Are plastocyanin and ferredoxin specific electron carriers or generic redox capacitors? Classical and murburn perspectives on two photosynthetic proteins. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2020.1835715
  • Govindjee. (1975). Bioenergetics of photosynthesis. Academic Press.
  • Govindjee. (1999). On the requirement of minimum number of four versus eight quanta of light for the evolution of one molecule of oxygen in photosynthesis: A historical note. Photosynthesis Research, 59, 249–254.
  • Govindjee, Shevela, D., & Björn, L. O. (2017). Evolution of the Z-scheme of photosynthesis: A perspective. Photosynthesis Research, 133, 5–15. https://doi.org/10.1007/s11120-016-0333-z
  • Grotjohann, I. F. (2011). Structure of cyanobacterial photosystems I and II. In G. A. Peschek, C. Obinger, & G. Renger (Eds.), Bioenergetic processes of cyanobacteria: From evolutionary singularity to ecological diversity (pp. 285–336). Springer.
  • Haehnel, W., Ratajczak, R., & Robenek, H. (1989). Lateral distribution and diffusion of plastocyanin in chloroplast thylakoids. The Journal of Cell Biology, 108(4), 1397–1405. https://doi.org/10.1083/jcb.108.4.1397
  • Hager, L. P. (2010). A lifetime of playing with enzymes. The Journal of Biological Chemistry, 285(20), 14852–14860. https://doi.org/10.1074/jbc.X110.121905
  • Han, R.-M., Zhang, J. P., & Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules (Basel, Switzerland), 17(2), 2140–2160. https://doi.org/10.3390/molecules17022140
  • Hashida, S. N., & Kawai-Yamada, M. (2019). Inter-organelle NAD metabolism underpinning light responsive NADP dynamics in plants. Frontiers in Plant Science, 10, 960. https://doi.org/10.3389/fpls.2019.00960
  • Haumann, M., Grundmeier, A., Zaharieva, I., & Dau, H. (2008). Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17384–17389. https://doi.org/10.1073/pnas.0802596105
  • Hauska, G. (1977). Artificial acceptors and donors. In A. Trebst & M. Avron (Eds.), Photosynthesis I. Encyclopedia of plant physiology (New series) (pp. 253–265). Springer.
  • Hill, R., Szabó, M., Ur Rehman, A., Vass, I., Ralph, P. J., & Larkum, A. W. D. (2014). Inhibition of photosynthetic CO2 fixation in the coral Pocillopora damicornis and its relationship to thermal bleaching. The Journal of Experimental Biology, 217, 2150–2162.
  • Hogewoning, S. W., Wientjes, E., Douwstra, P., Trouwborst, G., van Ieperen, W., Croce, R., & Harbinson, J. (2012). Photosynthetic quantum yield dynamics: From photosystems to leaves. The Plant Cell, 24(5), 1921–1935. https://doi.org/10.1105/tpc.112.097972
  • Hope, A. B., Valente, P., & Matthews, D. B. (1994). Effects of pH on the kinetics of redox reactions in and around the cytochromebf complex in an isolated system. Photosynthesis Research, 42(2), 111–120. https://doi.org/10.1007/BF02187122
  • Horváth, A., Papp, S., & Décsy, Z. (1984). Formation of aquated electrons and the individual quantum yields for photoactive species in the Cu(I)—KCN—H2O system. Journal of Photochemistry, 24(4), 331–339. https://doi.org/10.1016/0047-2670(84)80015-5
  • Huber, S. C. (1979). Effect of pH on chloroplast photosynthesis. Inhibition of O2 evolution by inorganic phosphate and magnesium. Biochimica et Biophysica Acta, 545(1), 131–140. https://doi.org/10.1016/0005-2728(79)90120-8
  • Jacob, V. D., & Manoj, K. M. (2019). Are adipocytes and ROS villains, or are they protagonists in the drama of life? The murburn perspective. Adipobiology, 10, 7–16.
  • Joliot, P., Barbieri, G., & Chabaud, R. (1969). Un nouveau modele des centres photochimiques du systeme II. Photochemistry and Photobiology, 10(5), 309–329. https://doi.org/10.1111/j.1751-1097.1969.tb05696.x
  • Joliot, P., Joliot, A., Bouges, B., & Barbieri, G. (1971). Studies of system II photocenters by comparative measurements of luminescence, fluorescence, and oxygen emission. Photochemistry and Photobiology, 14(3), 287–305. https://doi.org/10.1111/j.1751-1097.1971.tb06174.x
  • Kern, J., Chatterjee, R., Young, I. D., Fuller, F. D., Lassalle, L., Ibrahim, M., Gul, S., Fransson, T., Brewster, A. S., Alonso-Mori, R., Hussein, R., Zhang, M., Douthit, L., de Lichtenberg, C., Cheah, M. H., Shevela, D., Wersig, J., Seuffert, I., Sokaras, D., … Yachandra, V. K. (2018). Structures of the intermediates of Kok's photosynthetic water oxidation clock. Nature, 563(7731), 421–425. https://doi.org/10.1038/s41586-018-0681-2
  • Khorobrykh, S., Havurinne, V., Mattila, H., & Tyystjärvi, E. (2020). Oxygen and ROS in photosynthesis. Plants, 9(1), 91. https://doi.org/10.3390/plants9010091
  • Khorobrykh, S. A., Karonen, M., & Tyystjärvi, E. (2015). Experimental evidence suggesting that H2O2 is produced within the thylakoid membrane in a reaction between plastoquinol and singlet oxygen. FEBS Letters, 589(6), 779–786. https://doi.org/10.1016/j.febslet.2015.02.011
  • Kirchhoff, H. (2014). Diffusion of molecules and macromolecules in thylakoid membranes. Biochimica et Biophysica Acta, 1837(4), 495–502. https://doi.org/10.1016/j.bbabio.2013.11.003
  • Kok, B., Forbush, B., & McGloin, M. (1970). Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochemistry and Photobiology, 11(6), 457–475. https://doi.org/10.1111/j.1751-1097.1970.tb06017.x
  • Kok, B., Joliot, P., & McGloin, M. (1969). Electron transfer between the photoacts. Progress in Photosynthesis Research, 2, 1042–1056.
  • Konovalova, T. A., Kispert, L. D., & Konovalov, V. V. (1997). Photoinduced electron transfer between carotenoids and solvent molecules. The Journal of Physical Chemistry B, 101(39), 7858–7862. https://doi.org/10.1021/jp9708761
  • Krieger-Liszkay, A. (2005). Singlet oxygen production in photosynthesis. Journal of Experimental Botany, 56(411), 337–346. https://doi.org/10.1093/jxb/erh237
  • Kurisu, G., Zhang, H., Smith, J. L., & Cramer, W. A. (2003). Structure of the cytochrome b6f complex of oxygenic photosynthesis: Tuning the cavity. Science (New York, N.Y.), 302(5647), 1009–1014. https://doi.org/10.1126/science.1090165
  • Lavorel, J. (1976). Matrix analysis of the oxygen evolving system of photosynthesis. Journal of Theoretical Biology, 57(1), 171–175. https://doi.org/10.1016/S0022-5193(76)80011-2
  • Lehninger, A., Nelson, D., & Cox, M. (2004). Principles of biochemistry. Palgrave Macmillan Limited.
  • Lohmiller, T., Ames, W., Lubitz, W., Cox, N., & Misra, S. K. (2013). EPR Spectroscopy and the electronic structure of the oxygen-evolving complex of photosystem II. Applied Magnetic Resonance, 44(6), 691–720. https://doi.org/10.1007/s00723-012-0437-3
  • Lubitz, W., Chrysina, M., & Cox, N. (2019). Water oxidation in photosystem II. Photosynthesis Research, 142(1), 105–125. https://doi.org/10.1007/s11120-019-00648-3
  • Malone, L. A., Qian, P., Mayneord, G. E., Hitchcock, A., Farmer, D. A., Thompson, R. F., Swainsbury, D. J. K., Ranson, N. A., Hunter, C. N., & Johnson, M. P. (2019). Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution. Nature, 575(7783), 535–539. https://doi.org/10.1038/s41586-019-1746-6
  • Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1764, 1325–1339.
  • Manoj, K. M. (2017). Debunking chemiosmosis and proposing murburn concept as the operative principle for cellular respiration. Biomedical Reviews, 28, 31–48. https://doi.org/10.14748/bmr.v28.4450
  • Manoj, K. M. (2018a). Aerobic respiration: Criticism of the proton-centric explanation involving rotary adenosine triphosphate synthesis, chemiosmosis principle, proton pumps and electron transport chain. Biochemistry Insights, 11, 1178626418818442. https://doi.org/10.1177/1178626418818442
  • Manoj, K. M. (2018b). The ubiquitous biochemical logic of murburn concept. Biomedical Reviews, 29, 89–97. https://doi.org/10.14748/bmr.v29.5854
  • Manoj, K. M. (2020a). Murburn concept: A paradigm shift in cellular metabolism and physiology. Biomolecular Concepts, 11(1), 7–22. https://doi.org/10.1515/bmc-2020-0002
  • Manoj, K. M. (2020b). Refutation of the cation-centric torsional ATP synthesis model and advocating murburn scheme for mitochondrial oxidative phosphorylation. Biophysical Chemistry, 257, 106278. https://doi.org/10.1016/j.bpc.2019.106278
  • Manoj, K. M. (2020c). In defense of the murburn explanation for aerobic respiration. Biomedical Reviews, 31, 135–160. https://doi.org/10.14748/bmr.v31.7713
  • Manoj, K. M., Baburaj, A., Ephraim, B., Pappachan, F., Maviliparambathu, P. P., Vijayan, U. K., Narayanan, S. V., Periasamy, K., George, E. A., & Mathew, L. T. (2010a). Explaining the atypical reaction profiles of heme enzymes with a novel mechanistic hypothesis and kinetic treatment. PLoS One, 5(5), e10601. https://doi.org/10.1371/journal.pone.0010601
  • Manoj, K. M., & Bazhin, N. M. (2021). Murburn precepts for aerobic respiration and homeostasis. Progress in Biophysics and Molecular Biology. https://doi.org/10.1016/j.pbiomolbio.2021.05.010
  • Manoj, K. M., Gade, S. K., & Mathew, L. (2010b). Cytochrome P450 reductase: A harbinger of diffusible reduced oxygen species. PLoS One, 5(10), e13272. https://doi.org/10.1371/journal.pone.0013272
  • Manoj, K. M., Gade, S. K., Venkatachalam, A., & Gideon, D. A. (2016). Electron transfer amongst flavo- and hemo-proteins: Diffusible species effect the relay processes, not protein–protein binding. RSC Advances, 6(29), 24121–24129. https://doi.org/10.1039/C5RA26122H
  • Manoj, K. M., Gideon, D. A., & Jacob, V. D. (2018). Murburn scheme for mitochondrial thermogenesis. Biomedical Reviews, 29, 73–82. https://doi.org/10.14748/bmr.v29.5852
  • Manoj, K. M., Gideon, D. A., & Parashar, A. (2020a). What is the role of lipid membrane-embedded quinones in mitochondria and chloroplasts? Chemiosmotic Q-cycle versus Murburn reaction perspective. Cell Biochemistry and Biophysics, 79(1), 3–10. https://doi.org/10.1007/s12013-020-00945-y
  • Manoj, K. M., Gideon, D. A., & Parashar, A. (2020b). Refuting the ideas advocated by Yuly et al. (PNAS, Sep. 2020): ‘Universal free energy landscapes’ and ‘deterministic electron-relay circuitry’ are unsustainable within membrane-embedded cytochrome b protein complexes involved in bioenergetic routines. OSF Preprints. https://doi.org/10.31219/osf.io/4vmct
  • Manoj, K. M., & Hager, L. P. (2001). Utilization of peroxide and its relevance in oxygen insertion reactions catalyzed by chloroperoxidase. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, 1547(2), 408–417. https://doi.org/10.1016/S0167-4838(01)00210-2
  • Manoj, K. M., & Hager, L. P. (2006). A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. Analytical Biochemistry, 348(1), 84–86. https://doi.org/10.1016/j.ab.2005.10.014
  • Manoj, K. M., & Hager, L. P. (2008). Chloroperoxidase, a Janus enzyme. Biochemistry, 47(9), 2997–3003. https://doi.org/10.1021/bi7022656
  • Manoj, K. M., & Jacob, V. D. (2020). The murburn precepts for photoreception. Biomedical Reviews, 31, 67–74. https://doi.org/10.14748/bmr.v31.7706
  • Manoj, K. M., & Manekkathodi, A. (2021). Light's interaction with pigments in chloroplasts: The murburn perspective. Journal of Photochemistry and Photobiology, 5, 100015. https://doi.org/10.1016/j.jpap.2020.100015
  • Manoj, K. M., Parashar, A., David Jacob, V., & Ramasamy, S. (2019). Aerobic respiration: Proof of concept for the oxygen-centric murburn perspective. Journal of Biomolecular Structure & Dynamics, 37(17), 4542–4556. https://doi.org/10.1080/07391102.2018.1552896
  • Manoj, K. M., Parashar, A., Gade, S. K., & Venkatachalam, A. (2016). Functioning of microsomal cytochrome P450s: Murburn concept explains the metabolism of xenobiotics in hepatocytes. Frontiers in Pharmacology, 7, 161. https://doi.org/10.3389/fphar.2016.00161
  • Manoj, K. M., Parashar, A., Venkatachalam, A., Goyal, S., Satyalipsu, Singh, P. G., Gade, S. K., Periyasami, K., Jacob, R. S., Sardar, D., Singh, S., Kumar, R., & Gideon, D. A. (2016). Atypical profiles and modulations of heme-enzymes catalyzed outcomes by low amounts of diverse additives suggest diffusible radicals' obligatory involvement in such redox reactions. Biochimie, 125, 91–111. https://doi.org/10.1016/j.biochi.2016.03.003
  • Manoj, K. M., Ramasamy, S., Parashar, A., Gideon, D. A., Soman, V., Jacob, V. D., & Pakshirajan, K. (2020). Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomolecular Concepts, 11(1), 32–56. https://doi.org/10.1515/bmc-2020-0004
  • Manoj, K. M., & Soman, V. (2020). Classical and murburn explanations for acute toxicity of cyanide in aerobic respiration: A personal perspective. Toxicology, 432, 152369. https://doi.org/10.1016/j.tox.2020.152369
  • Manoj, K. M., Soman, V., David Jacob, V., Parashar, A., Gideon, D. A., Kumar, M., Manekkathodi, A., Ramasamy, S., Pakshirajan, K., & Bazhin, N. M. (2019). Chemiosmotic and murburn explanations for aerobic respiration: Predictive capabilities, structure-function correlations and chemico-physical logic. Archives of Biochemistry and Biophysics, 676, 108128. https://doi.org/10.1016/j.abb.2019.108128
  • Manoj, K. M., Venkatachalam, A., & Parashar, A. (2016). Metabolism of xenobiotics by cytochrome P450: Novel insights into the thermodynamics, kinetics and roles of redox proteins and diffusible reactive species. Drug Metabolism Reviews, 48, 41–42.
  • Manoj, K. M., Yi, X., Rai, G. P., & Hager, L. P. (1999). A kinetic epoxidation assay for chloroperoxidase. Biochemical and Biophysical Research Communications, 266(2), 301–303. https://doi.org/10.1006/bbrc.1999.1810
  • Martin, W. F., & Allen, J. F. (2018). An algal greening of land. Cell, 174(2), 256–258. https://doi.org/10.1016/j.cell.2018.06.034
  • Matsuki, S., & Koike, T. (2006). Comparison of leaf life span, photosynthesis and defensive traits across seven species of deciduous broad-leaf tree seedlings. Annals of Botany, 97(5), 813–817. https://doi.org/10.1093/aob/mcl041
  • Mazor, Y., Borovikova, A., Caspy, I., & Nelson, N. (2017). Structure of the plant photosystem I supercomplex at 2.6 Å resolution. Nature Plants, 3, 17014. https://doi.org/10.1038/nplants.2017.14
  • McKenzie, S. D., Ibrahim, I. M., Aryal, U. K., & Puthiyaveetil, S. (2020). Stoichiometry of protein complexes in plant photosynthetic membranes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1861(2), 148141. https://doi.org/10.1016/j.bbabio.2019.148141
  • Mondal, J., & Bruce, B. D. (2018). Ferredoxin: The central hub connecting photosystem I to cellular metabolism. Photosynthetica, 56(1), 279–293. https://doi.org/10.1007/s11099-018-0793-9
  • Nakamura, A., Suzawa, T., Kato, Y., & Watanabe, T. (2011). Species dependence of the redox potential of the primary electron donor p700 in photosystem I of oxygenic photosynthetic organisms revealed by spectroelectrochemistry. Plant & Cell Physiology, 52(5), 815–823. https://doi.org/10.1093/pcp/pcr034
  • Nakatani, H. Y. (1983). Inhibition of photosynthetic oxygen evolution in thylakoids by Cyanide. Plant and Cell Physiology, 24, 467–472.
  • Parashar, A., Gade, S. K., Potnuru, M., Madhavan, N., & Manoj, K. M. (2014). The curious case of benzbromarone: Insight into super-inhibition of cytochrome P450. PLoS One, 9(3), e89967. https://doi.org/10.1371/journal.pone.0089967
  • Parashar, A., Gideon, D. A., & Manoj, K. M. (2018). Murburn concept: A molecular explanation for hormetic and idiosyncratic dose responses. Dose-Response, 16(2), 1559325818774421. https://doi.org/10.1177/1559325818774421
  • Parashar, A., Jacob, V. D., Gideon, D. A., & Manoj, K. M. (2021). Hemoglobin catalyzes ATP-synthesis in human erythrocytes: A murburn model. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1925592
  • Parashar, A., & Manoj, K. M. (2012). Traces of certain drug molecules can enhance heme-enzyme catalytic outcomes. Biochemical and Biophysical Research Communications, 417(3), 1041–1045. https://doi.org/10.1016/j.bbrc.2011.12.090
  • Parashar, A., Venkatachalam, A., Gideon, D. A., & Manoj, K. M. (2014). Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand. Biochemical and Biophysical Research Communications, 455(3–4), 190–193. https://doi.org/10.1016/j.bbrc.2014.10.137
  • Pesaresi, P., Scharfenberg, M., Weigel, M., Granlund, I., Schröder, W. P., Finazzi, G., Rappaport, F., Masiero, S., Furini, A., Jahns, P., & Leister, D. (2009). Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: Revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Molecular Plant, 2(2), 236–248. https://doi.org/10.1093/mp/ssn041
  • Pospisil, P. (2016). Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Frontiers in Plant Science, 7, 1950.
  • Rappaport, F., Guergova-Kuras, M., Nixon, P. J., Diner, B. A., & Lavergne, J. (2002). Kinetics and pathways of charge recombination in photosystem II. Biochemistry, 41(26), 8518–8527. https://doi.org/10.1021/bi025725p
  • Sanderson, D. G., Anderson, L. B., & Gross, E. L. (1986). Determination of the redox potential and diffusion coefficient of the protein plastocyanin using optically transparent filar electrodes. Biochimica et Biophysica Acta, 852(2–3), 269–278. https://doi.org/10.1016/0005-2728(86)90232-x
  • Sarwar Jahan, M. S., Nozulaidi, M., Khairi, M., & Mat, N. (2016). Light-harvesting complexes in photosystem II regulate glutathione-induced sensitivity of Arabidopsis guard cells to abscisic acid. Journal of Plant Physiology, 195, 1–8. https://doi.org/10.1016/j.jplph.2016.03.002
  • Shen, J., Zeng, Y., Zhuang, X., Sun, L., Yao, X., Pimpl, P., & Jiang, L. (2013). Organelle pH in the Arabidopsis endomembrane system. Molecular Plant, 6(5), 1419–1437. https://doi.org/10.1093/mp/sst079
  • Shinkarev, V. P. (2003). Oxygen evolution in photosynthesis: Simple analytical solution for the Kok model. Biophysical Journal, 85(1), 435–441. https://doi.org/10.1016/S0006-3495(03)74488-9
  • Suga, M., Akita, F., Yamashita, K., Nakajima, Y., Ueno, G., Li, H., Yamane, T., Hirata, K., Umena, Y., Yonekura, S., Yu, L.-J., Murakami, H., Nomura, T., Kimura, T., Kubo, M., Baba, S., Kumasaka, T., Tono, K., Yabashi, M., … Shen, J.-R. (2019). An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science (New York, N.Y.), 366(6463), 334–338. https://doi.org/10.1126/science.aax6998
  • Trchounian, A., Petrosyan, M., & Sahakyan, N. (2016). Plant cell redox homeostasis and reactive oxygen species. In D. Gupta, J. Palma, & F. Corpas (Eds.), Redox state as a central regulator of plant-cell stress responses. Springer.
  • Tschörtner, J., Lai, B., & Krömer, J. O. (2019). Biophotovoltaics: Green power generation from sunlight and water. Frontiers in Microbiology, 10, 866. https://doi.org/10.3389/fmicb.2019.00866
  • Ullrich-Eberius, C. I., Novacky, A., & Ball, E. (1983). Effect of cyanide in dark and light on the membrane potential and the ATP level of young and mature green tissues of higher plants. Plant Physiology, 72(1), 7–15. https://doi.org/10.1104/pp.72.1.7
  • Venkatachalam, A., Parashar, A., & Manoj, K. M. (2016). Functioning of drug-metabolizing microsomal cytochrome P450s: In silico probing of proteins suggests that the distal heme 'active site' pocket plays a relatively 'passive role' in some enzyme-substrate interactions. In Silico Pharmacol, 4, 2.
  • Voet, D., & Voet, J. (2011). Biochemistry. Wiley.
  • Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W., & Walker, J. E. (2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 107(39), 16823–16827. https://doi.org/10.1073/pnas.1011099107
  • Wei, X., Su, X., Cao, P., Liu, X., Chang, W., Li, M., Zhang, X., & Liu, Z. (2016). Structure of spinach photosystem II-LHCII supercomplex at 3.2 Å resolution. Nature, 534(7605), 69–74. https://doi.org/10.1038/nature18020
  • Whittingham, C. P. (1952). Inhibition of photosynthesis by cyanide. Nature, 169(4307), 838–839. https://doi.org/10.1038/169838a0
  • Woodson, J. D., Joens, M. S., Sinson, A. B., Gilkerson, J., Salomé, P. A., Weigel, D., Fitzpatrick, J. A., & Chory, J. (2015). Ubiquitin facilitates a quality-control pathway that removes damaged chloroplasts. Science (New York, N.Y.), 350(6259), 450–454. https://doi.org/10.1126/science.aac7444
  • Wu, Y. (2021). Is bicarbonate directly used as substrate to participate in photosynthetic oxygen evolution. Acta Geochim. https://doi.org/10.1007/s11631-021-00484-0
  • Xu, Y.-H., Liu, R., Yan, L., Liu, Z.-Q., Jiang, S.-C., Shen, Y.-Y., Wang, X.-F., & Zhang, D.-P. (2012). Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. Journal of Experimental Botany, 63(3), 1095–1106. https://doi.org/10.1093/jxb/err315
  • Young, I. D., Ibrahim, M., Chatterjee, R., Gul, S., Fuller, F., Koroidov, S., Brewster, A. S., Tran, R., Alonso-Mori, R., Kroll, T., Michels-Clark, T., Laksmono, H., Sierra, R. G., Stan, C. A., Hussein, R., Zhang, M., Douthit, L., Kubin, M., de Lichtenberg, C. … Yano, J. (2016). Structure of photosystem II and substrate binding at room temperature. Nature, 540(7633), 453–457. https://doi.org/10.1038/nature20161
  • Zhang, L., Pakrasi, H. B., & Whitmarsh, J. (1994). Photoautotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 in the absence of cytochrome c553 and plastocyanin. The Journal of Biological Chemistry, 269(7), 5036–5042.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.