226
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 11070-11081 | Received 16 Jun 2020, Accepted 08 Jul 2021, Published online: 25 Aug 2021

References

  • Arul, V., Kumaraguru, S., & Dhananjayan, R. (1999). Effects of ageline and lupeol, the two cardioactive principles isolated from the leaves of Aegle marmelos Corr. Journal of Pharmacy and Pharmacology, 51, 252–252.
  • Badam, L., Bedekar, S. S., Sonawane, K. B., & Joshi, S. P. (2002). In vitro antiviral activity of bael (Aegle marmelos Corr) upon human coxsackieviruses B1-B6. The Journal of Communicable Diseases, 34(2), 88–99.
  • Boobis, A., Gundert-Remy, U., Kremers, P., Macheras, P., & Pelkonen, O. (2002). In silico prediction of ADME and pharmacokinetics: Report of an expert meeting organised by COST B15. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 17(4–5), 183–193. https://doi.org/10.1016/S0928-0987(02)00185-9
  • Bugrim, A., Nikolskaya, T., & Nikolsky, Y. (2004). Early prediction of drug metabolism and toxicity: Systems biology approach and modeling. Drug Discovery Today, 9(3), 127–135. https://doi.org/10.1016/S1359-6446(03)02971-4
  • Chadwick, D. J., & Marsh, J. (Eds.). (2008). Ethnobotany and the search for new drugs. Ciba Foundation Symposium (Vol. 185). John Wiley & Sons.
  • Chou, K. C., Wei, D. Q., Du, Q. S., Sirois, S., & Zhong, W. Z. (2006). Progress in computational approach to drug development against SARS. Current Medicinal Chemistry, 13(27), 3263–3270. https://doi.org/10.2174/092986706778773077
  • Cronin, M. T. (2001). Prediction of drug toxicity. Farmaco (Societa Chimica Italiana: 1989), 56(1–2), 149–151. https://doi.org/10.1016/S0014-827X(01)01018-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717 https://doi.org/10.1038/srep42717
  • Dallakyan, S. (2008). PyRx-python prescription v. 0.8, The Scripps Research Institute, 2010.
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2020). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure and Dynamics, 39(8), 2980–2992. https://doi.org/10.1080/07391102.2020.1758791
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 39(9), 3092–3098. https://doi.org/10.1080/07391102.2020.1760136
  • Farnsworth, N. R. (1994). Ethnopharmacology and drug development. In Ciba foundation symposium 185‐Ethnobotany and the search for new drugs: Ethnobotany and the Search for New Drugs: Ciba Foundation Symposium. John Wiley & Sons.
  • Farooq, S. (2005). 555 medicinal plants. Field and laboratory manual (identification with its phytochemical and in vitro studies data. International Book Distributors.
  • Feng, P., Zhao, L., Guo, F., Zhang, B., Fang, L., Zhan, G., Xu, X., Fang, Q., Liang, Z., & Li, B. (2018). The enhancement of cardiotoxicity that results from inhibiton of CYP 3A4 activity and hERG channel by berberine in combination with statins. Chemico-Biological Interactions, 293, 115–123. https://doi.org/10.1016/j.cbi.2018.07.022
  • Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., & Zoete, V. (2014). SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Research, 42(1), 32–38.
  • Goren, R., & Tomer, E. (1971). Effects of seselin and coumarin on growth, indoleacetic acid Oxidase, and Peroxidase, with Special Reference to Cucumber (Cucumis sativa L.) Radicles. Plant Physiology, 47(2), 312–316. https://doi.org/10.1104/pp.47.2.312
  • Govindachari, T. R., & Premila, M. S. (1983). Some alkaloids from Aegle marmelos. Phytochemistry, 22(3), 755–757. https://doi.org/10.1016/S0031-9422(00)86977-0
  • Gunatilaka, A. A., Kingston, D. G., Wijeratne, E. M., Bandara, B. M., Hofmann, G. A., & Johnson, R. K. (1994). Biological activity of some coumarins from Sri Lankan Rutaceae. Journal of Natural Products, 57(4), 518–520. https://doi.org/10.1021/np50106a013
  • Hadži, D., Kidrič, J., Koller, J., & Mavri, J. (1990). The role of hydrogen bonding in drug-receptor interactions. Journal of Molecular Structure, 237, 139–150. https://doi.org/10.1016/0022-2860(90)80136-8
  • Hall, D. C., Jr., & Ji, H. F. (2020). A search for medications to treat COVID-19 via in silico molecular docking models of the SARS-CoV-2 spike glycoprotein and 3CL protease. Travel Medicine and Infectious Disease, 35, 101646. https://doi.org/10.1016/j.tmaid.2020.101646
  • Hofmann, H., & Pöhlmann, S. (2004). Cellular entry of the SARS coronavirus. Trends in Microbiology, 12(10), 466–472. https://doi.org/10.1016/j.tim.2004.08.008
  • Huang, L., Kashiwada, Y., Cosentino, L. M., Fan, S., & Lee, K. H. (1994). 3′,4′-Di-o-(−)-camphanoyl-(+) -ciskhellactone and related compounds: A new class of potent anti-HIV agents. Bioorganic and Medicinal Chemistry Letters, 4(4), 593–598. https://doi.org/10.1016/S0960-894X(01)80161-X
  • Huentelman, M. J., Zubcevic, J., Hernandez Prada, J. A., Xiao, X., Dimitrov, D. S., Raizada, M. K., & Ostrov, D. A. (2004). Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 44(6), 903–906. https://doi.org/10.1161/01.HYP.0000146120.29648.36
  • Jimenez-Garcia, S. N., Vazquez-Cruz, M. A., Guevara-Gonzalez, R. G., Torres-Pacheco, I., Cruz-Hernandez, A., & Feregrino-Perez, A. A. (2013). Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes–a review. Polish Journal of Food and Nutrition Sciences, 63(2), 67–78. https://doi.org/10.2478/v10222-012-0072-6
  • Jogalekar, M. P., Veerabathini, A., & Gangadaran, P. (2020). Novel 2019 coronavirus: Genome structure, clinical trials, and outstanding questions. Experimental Biology and Medicine, 245, 964–969. https://doi.org/10.1177/1535370220920540
  • Kubinyi, H. (2001). Hydrogen bonding: The last mystery in drug design. In B. Testa, H. van de Waterbeemd, G. Folkers, R. Guy (Eds.), Pharmacokinetic optimization in drug research: Biological, physicochemical, and computational strategies (pp. 513–524). Verlag Helvetica Chimica Acta.
  • Kumari, R., & Kumar, R. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuo, C. J., Liu, H. G., Lo, Y. K., Seong, C. M., Lee, K. I., Jung, Y. S., & Liang, P. H. (2009). Individual and common inhibitors of coronavirus and picornavirus main proteases. FEBS Letters, 583(3), 549–555. https://doi.org/10.1016/j.febslet.2008.12.059
  • Lima, V., Silva, C. B., Mafezoli, J., Bezerra, M. M., Moraes, M. O., Mourao, G. S., Silva, J. N., & Oliveira, M. C. (2006). Antinociceptive activity of the pyranocoumarin seselin in mice. Fitoterapia, 77(7–8), 574–578. https://doi.org/10.1016/j.fitote.2006.09.005
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. https://doi.org/10.1080/17460441.2018.1403419
  • Liu, X., Zhang, B., J. Z., Yang, H., & Rao, Z. (2020). The crystal structure of COVID-19 main protease in complex with an inhibitor N3. RCSB PDB.
  • Manandhar, M. D., Shoeb, A., Kapil, R. S., & Popli, S. P. (1978). New alkaloids from Aegle marmelos. Phytochemistry, 17(10), 1814–1815. https://doi.org/10.1016/S0031-9422(00)88714-2
  • McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand-protein docking. Current Science, 83(7), 845–855.
  • Melnick, J. L. (1984). Enteroviruses. In A. S. Evans (Ed.), Viral infections of humans (pp. 187–251). Springer.
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mukandiwa, L., Ahmed, A., Eloff, J. N., & Naidoo, V. (2013). Isolation of seselin from Clausena anisata (Rutaceae) leaves and its effects on the feeding and development of Lucilia cuprina larvae may explain its use in ethnoveterinary medicine. Journal of Ethnopharmacology, 150(3), 886–891. https://doi.org/10.1016/j.jep.2013.09.037
  • Mukandiwa, L., Eloff, J. N., & Naidoo, V. (2015). Larvicidal activity of leaf extracts and seselin from Clausena anisata (Rutaceae) against Aedes aegypti. South African Journal of Botany, 100, 169–173. https://doi.org/10.1016/j.sajb.2015.05.016
  • Muralidharan, N., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2020). Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. Journal of Biomolecular Structure and Dynamics, 39(7), 2673–2678. https://doi.org/10.1080/07391102.2020.1752802
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Ortega, N. C. C., Gonzalez, C. P., Sanchez, M. A. Z., Ramirez, A. B. H., & Gutierrez, S. P. (2007). Antifungal activity of seselin in protecting stored maize from Aspergillus flavus. Asian Journal of Plant Sciences, 6, 712–714.
  • Parveen, M., Ahmad, F., Malla, A. M., Khan, M. S., Rehman, S. U., Tabish, M., Silva, M. R., & Silva, P. S. (2016). Structure elucidation and DNA binding specificity of natural compounds from Cassia siamea leaves: A biophysical approach. Journal of Photochemistry and Photobiology. B, Biology, 159, 218–288. https://doi.org/10.1016/j.jphotobiol.2016.03.060
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Rane, J. S., Chatterjee, A., Kumar, A., & Ray, S. (2020). Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: An in-silico study for drug development. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.26434/chemrxiv.12094203.v1
  • Sampangi-Ramaiah, M. H., Vishwakarma, R., & Shaanker, R. U. (2020). Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7), 1087–1092.
  • Scavone, C., Brusco, S., Bertini, M., Sportiello, L., Rafaniello, C., Zoccoli, A., Berrino, L., Racagni, G., Rossi, F., & Capuano, A. (2020). Current pharmacological treatments for COVID‐19: What’s next? British Journal of Pharmacology, 177(21), 4813–4824. https://doi.org/10.1111/bph.15072
  • Singh, G., Jayadev Magani, S. K., Sharma, R., Bhat, B., Shrivastava, A., Chinthakindi, M., & Singh, A. (2019). Structural, functional and molecular dynamics analysis of cathepsin B gene SNPs associated with tropical calcific pancreatitis, a rare disease of tropics. PeerJ, 7, e7425 https://doi.org/10.7717/peerj.7425
  • Somu, C., Karuppiah, H., & Sundaram, J. (2019). Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm, Bombyx mori. Journal of Ethnopharmacology, 245, 112155 https://doi.org/10.1016/j.jep.2019.112155
  • Surti, M., Patel, M., Adnan, M., Moin, A., Ashraf, S. A., Siddiqui, A. J., Snoussi, M., Deshpande, S., & Reddy, M. N. (2020). Ilimaquinone (marine sponge metabolite) as a novel inhibitor of SARS-CoV-2 key target proteins in comparison with suggested COVID-19 drugs: Designing, docking and molecular dynamics simulation study. RSC Advances, 10(62), 37707–37720. https://doi.org/10.1039/D0RA06379G
  • Tanaka, H., Ahn, J. W., Katayama, M., Wada, K., Marumo, S., & Osaka, Y. (1985). Isolation of two ovicidal substances against two-spotted spider mite. Agricultural and Biological Chemistry, 49(7), 2189–2190. https://doi.org/10.1271/bbb1961.49.2189
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ul Qamar, M. T., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7), e00127–20. https://doi.org/10.1128/JVI.00127-20
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., & Zheng, M. (2020). Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B, 10(5), 766–788. https://doi.org/10.1016/j.apsb.2020.02.008
  • Yang, H., Sun, L., Li, W., Liu, G., & Tang, Y. (2018). In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Frontiers in Chemistry, 6, 30.
  • Yunta, M. J. (2017). It is important to compute intramolecular hydrogen bonding in drug design. Am J Model Optim, 5, 24–57.
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhang, L., Sun, X., & Hilgenfeld, R. (2020). Crystal structure of the free enzyme of the SARS-CoV-2 (2019-nCoV) main protease. RCSB PDB.
  • Zhang, Y., Zheng, N., Hao, P., Cao, Y., & Zhong, Y. (2005). A molecular docking model of SARS-CoV S1 protein in complex with its receptor, human ACE2. Computational Biology and Chemistry, 29(3), 254–257. https://doi.org/10.1016/j.compbiolchem.2005.04.008
  • Zhu, Y., & Sun, F. (2020). Structure of post fusion core of 2019-nCoV S2 subunit. RCSB PDB.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.