310
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Design and in silico investigation of novel Maraviroc analogues as dual inhibition of CCR-5/SARS-CoV-2 Mpro

, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 11095-11110 | Received 28 Dec 2020, Accepted 10 Jul 2021, Published online: 26 Jul 2021

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahidjo, B. A., Loe, M., Ng, Y. L., Mok, C. K., & Chu, J. J. H. (2020). Current perspective of antiviral strategies against COVID-19. ACS Infectious Diseases, 6(7), 1624–1634. https://doi.org/10.1021/acsinfecdis.0c00236
  • Alkhatib, G., Combadiere, C., Broder, C. C., Feng, Y., Kennedy, P. E., Murphy, P. M., & Berger, E. A. (1996). CC CKR5: A RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science (New York, N.Y.), 272(5270), 1955–1958. https://doi.org/10.1126/science.272.5270.1955
  • Al-Sehemi, A. G., Pannipara, M., Patil, O., Parulekar, R. S., Choudhari, P. B., Bhatia, M. S., Zubaidha, P. K., & Tamboli, Y. (2020). Potentials of NO donor Furoxan as SARS-CoV-2 main protease (Mpro) inhibitors: In silico analysis. Journal of Biomolecular Structure and Dynamics, https://doi.org/10.1080/07391102.2020.1790038
  • Alves, V. M., Bobrowski, T., Melo‐Filho, C. C., Korn, D., Auerbach, S., Schmitt, C., Muratov, E. N., & Tropsha, A. (2021). QSAR modeling of SARS‐CoV Mpro inhibitors identifies sufugolix, cenicriviroc, proglumetacin, and other drugs as candidates for repurposing against SARS‐CoV‐2. Molecular Informatics, 40(1), 2000113. https://doi.org/10.1002/minf.202000113
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins Struct Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Amin, M., Sorour, M. K., & Kasry, A. (2020). Comparing the binding interactions in the receptor binding domains of SARS-CoV-2 and SARS-CoV. The Journal of Physical Chemistry Letters, 11(12), 4897–4900. https://doi.org/10.1021/acs.jpclett.0c01064
  • Barale, S. S., Parulekar, R. S., Fandilolu, P. M., Dhanavade, M. J., & Sonawane, K. D. (2019). Molecular insights into destabilization of Alzheimer’s Aβ protofibril by arginine containing short peptides: A molecular modeling approach. ACS Omega , 4(1), 892–903. https://doi.org/10.1021/acsomega.8b02672
  • Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., Webster, R., Armour, D., Price, D., Stammen, B., Wood, A., & Perros, M. (2005). Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrobial Agents and Chemotherapy, 49(11), 4721–4732. https://doi.org/10.1128/AAC.49.11.4721-4732.2005
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Gahlawat, A., Kumar, N., Kumar, R., Sandhu, H., Singh, I. P., Singh, S., Sjöstedt, A., & Garg, P. (2020). Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. Journal of Chemical Information and Modeling, 60(12), 5781–5793. https://doi.org/10.1021/acs.jcim.0c00546
  • Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M. A., Urquiza, J., Ramírez, D., Alonso, C., Campillo, N. E., & Martínez, A. (2020). COVID-19: Drug targets and potential treatments. Journal of Medicinal Chemistry, 63(21), 12359–12386. https://doi.org/10.1021/acs.jmedchem.0c00606
  • Gómez, J., Cuesta-Llavona, E., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado, L., López-Alonso, I., Hermida, T., Enriquez, A., Gil, H., & Alonso, B. (2020). The CCR5-delta32 variant might explain part of the association between COVID-19 and the chemokine-receptor gene cluster. medRxiv. https://doi.org/10.1101/2020.11.02.20224659
  • Goyal, B., & Goyal, D. (2020). Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, 22(6), 297–305. https://doi.org/10.1021/acscombsci.0c00058
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • https://www.rcsb.org/structure/6W63 https://www.worldometers.info/coronavirus/
  • Huynh, T., Wang, H., & Luan, B. (2020). In silico exploration of molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's main protease. The Journal of Physical Chemistry Letters, 11(11), 4413–4420. https://doi.org/10.1021/acs.jpclett.0c00994
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. ‎ https://doi.org/10.1021/jp003919d
  • Khan, S. A., Zia, K., Ashraf, S., & Uddin, R. (2021). Ul-Haq, Z. Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure and Dynamics, 39(7), 2607–2616. https://doi.org/10.1080/07391102.2020.1751298
  • Kliger, Y., Levanon, E. Y., & Gerber, D. (2005). From genome to antivirals: SARS as a test tube. Drug Discovery Today, 10(5), 345–352. https://doi.org/10.1016/S1359-6446(04)03320-3
  • Kumar, S., Sharma, P. P., Shankar, U., Kumar, D., Joshi, S. K., Pena, L., Durvasula, R., Kumar, A., Kempaiah, P., & Rathi, B. (2020). Discovery of new hydroxyethylamine analogs against 3CLpro protein target of SARS-CoV-2: Molecular docking, molecular dynamics simulation and structure-activity relationship studies. Journal of Chemical Information and Modeling, 60(12), 5754–5770. https://doi.org/10.1021/acs.jcim.0c00326
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lee, V. S., Chong, W. L., Sukumaran, S. D., Nimmanpipug, P., Letchumanan, V., Goh, B. H., Lee, L. H., Zain, S. M., & Abd Rahman, N. (2020). Computational screening and identifying binding interaction of anti-viral and anti-malarial drugs: Toward the potential cure for SARSCoV-2. Progress in Drug Discovery & Biomedical Science, 3(1), 1–9. https://doi.org/10.36877/pddbs.a0000065
  • MacArthur, R. D., & Novak, R. M. (2008). Reviews of anti-infective agents: Maraviroc: The first of a new class of antiretroviral agents. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 47(2), 236–241. https://doi.org/10.1086/589289
  • Mamidala, E., Davella, R., Gurrapu, S., & Shivakrishna, P. (2020). In silico identification of clinically approved medicines against the main protease of SARS-CoV-2, causative agent of covid-19. arXiv:2004.12055
  • Mohanta, T. K., Arina, P., Sharma, N., & Defilippi, P. (2020). Role of azithromycin in antiviral treatment: Enhancement of interferon-dependent antiviral pathways and mitigation of inflammation may rely on inhibition of the MAPK cascade? American Journal of Translational Research, 12, 7702.
  • Mohanta, T. K., Sharma, N., Arina, P., & Defilippi, P. (2020). Molecular insights into the MAPK cascade during viral infection: Potential crosstalk between HCQ and HCQ analogues. Biomed Research International, 2020, 1–9. https://doi.org/10.1155/2020/8827752
  • Ngo, S. T., Pham, N. Q. A., Le, L., Pham, D. H., & Vu, V. (2020). Computational Determination of Potential Inhibitors of SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 60(12), 5771–5780. https://doi.org/10.1021/acs.jcim.0c00491
  • Okamoto, M., Toyama, M., & Baba, M. (2020). The chemokine receptor antagonist cenicriviroc inhibits the replication of SARS-CoV-2 in vitro. Antiviral Research, 182, 104902. https://doi.org/10.1016/j.antiviral.2020.104902
  • Papaleo, E., Mereghetti, P., Fantucci, P., Grandori, R., & De Gioia, L. (2009). Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: The myoglobin case. Journal of Molecular Graphics & Modelling, 27(8), 889–899. https://doi.org/10.1016/j.jmgm.2009.01.006
  • Parulekar, R. S., & Sonawane, K. D. (2018). Insights into the antibiotic resistance and inhibition mechanism of aminoglycoside phosphotransferase from Bacillus cereus: In silico and in vitro perspective. Journal of Cellular Biochemistry, 119(11), 9444–9461. ‐https://doi.org/10.1002/jcb.27261
  • Parulekar, R. S., & Sonawane, K. D. (2018). Molecular modeling studies to explore the binding affinity of virtually screened inhibitor toward different aminoglycoside kinases from diverse MDR strains. Journal of Cellular Biochemistry, 119(3), 2679–2695. https://doi.org/10.1002/jcb.26435
  • Patterson, B. K., Seethamraju, H., Dhody, K., Corley, M. J., Kazempour, K., Lalezari, J. P., Pang, A. P., Sugai, C., Francisco, E. B., Pise, A., & Rodrigues, H. (2020). Disruption of the CCL5/RANTES-CCR5 pathway restores immune homeostasis and reduces plasma viral load in critical COVID-19. medRxiv, https://doi.org/10.1101/2020.05.02.20084673
  • Shamsi, A., Mohammad, T., Anwar, S., Alajmi, M., Hussain, A., Rehman, M., Islam, A., & Hassan, M. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible therapeutic implication in COVID-19. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256
  • Sheahan, T., Morrison, T. E., Funkhouser, W., Uematsu, S., Akira, S., Baric, R. S., & Heise, M. T. (2008). MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathogens, 4(12), e1000240. https://doi.org/10.1371/journal.ppat.1000240
  • Sorbera, L. A., Graul, A. I., & Dulsat, C. (2020). Taking aim at a fast-moving target: Targets to watch for SARS-CoV-2 and COVID-19. Drugs of the Future, 45(4), 239–244. https://doi.org/10.1358/dof.2020.45.4.3150676
  • Subramanian, B., Adolfo, B. P., & Ponmalai, K. (2021). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 3409–3418. https://doi.org/10.1080/07391102.2020.1758788
  • Tan, Q., Zhu, Y., Li, J., Chen, Z., Han, G. W., Kufareva, I., Li, T., Ma, L., Fenalti, G., Li, J., Zhang, W., Xie, X., Yang, H., Jiang, H., Cherezov, V., Liu, H., Stevens, R. C., Zhao, Q., & Wu, B. (2013). Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex. Science (New York, N.Y.), 341(6152), 1387–1390. https://doi.org/10.1126/science.1241475
  • Van Aalten, D. M., Bywater, R., Findlay, J. B., Hendlich, M., Hooft, R. W., & Vriend, G. (1996). PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of Computer-Aided Molecular Design, 10(3), 255–262. https://doi.org/10.1007/BF00355047
  • Wang, H., He, S., Deng, W., Zhang, Y., Li, G., Sun, J., Zhao, W., Guo, Y., Yin, Z., Li, D., & Shang, L. (2020). Comprehensive insights into the catalytic mechanism of middle east respiratory syndrome 3C-like protease and severe acute respiratory syndrome 3C-like protease. ACS Catalysis, 10, 5871–5890. https://doi.org/10.1021/acscatal.0c00110
  • Wang, J. (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information and Modeling, 60(6), 3277–3286. https://doi.org/10.1021/acs.jcim.0c00179
  • Wang, R., Hozumi, Y., Yin, C., & Wei, G. W. (2020). Decoding SARS-CoV-2 transmission, evolution and ramification on COVID-19 diagnosis, vaccine, and medicine. Journal of Chemical Information and Modeling, 60(12), 5853–5865. https://doi.org/10.1021/acs.jcim.0c00501
  • WHO. (2020). Novel Coronavirus(2019-nCoV) situation report.
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/pnas.1835675100
  • Yousefi, R., & Moosavi-Movahedi, A. A. (2020). Achilles' heel of the killer virus: The highly important molecular targets for hitting SARS-CoV-2 that causes COVID-19. Journal of the Iranian Chemical Society, 17(6), 1257–1258. https://doi.org/10.1007/s13738-020-01939-6
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.