506
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Remdesivir analogs against SARS-CoV-2 RNA-dependent RNA polymerase 

, , , , , & show all
Pages 11111-11124 | Received 18 May 2021, Accepted 10 Jul 2021, Published online: 27 Jul 2021

References

  • Adams, M. J. (2004). Chemometrics in Analytical Spectroscopy. Royal Society of Chemistry. https://doi.org/10.1039/9781847550484
  • Agostini, M. L., Andres, E. L., Sims, A. C., Graham, R. L., Sheahan, T. P., Lu, X., Smith, E. C., Case, J. B., Feng, J. Y., Jordan, R., Ray, A. S., Cihlar, T., Siegel, D., Mackman, R. L., Clarke, M. O., Baric, R. S., & Denison, M. R. (2018). Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio, 9(2), e00221-18. https://doi.org/10.1128/mBio.00221-18
  • Ahmed, S., Islam, N., Shahinozzaman, M., Fakayode, S. O., Afrin, N., & Halim, M. A. (2021). Virtual screening, molecular dynamics, density functional theory and quantitative structure activity relationship studies to design peroxisome proliferator-activated receptor-γ agonists as anti-diabetic drugs. Journal of Biomolecular Structure & Dynamics, 39(2), 728–742. https://doi.org/10.1080/07391102.2020.1714482
  • Ahmed, S., Mahtarin, R., Ahmed, S. S., Akter, S., Islam, M. S., Mamun, A. A., Islam, R., Hossain, M. N., Ali, M. A., Sultana, M. U. C., Parves, M. R., Ullah, M. O., & Halim, M. A. (2020). Investigating the binding affinity, interaction, and structure-activity-relationship of 76 prescription antiviral drugs targeting RdRp and Mpro of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 0(0), 1–16. https://doi.org/10.1080/07391102.2020.1796804
  • Alam, S., & Khan, F. (2017). 3D-QSAR studies on maslinic acid analogs for anticancer activity against breast cancer cell line MCF-7. Scientific Reports, 7(1), 6019. https://doi.org/10.1038/s41598-017-06131-0
  • Benkert, P., Biasini, M., & Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics (Oxford, England), 27(3), 343–350. https://doi.org/10.1093/bioinformatics/btq662
  • Berhanu, W. M., Pillai, G. G., Oliferenko, A. A., & Katritzky, A. R. (2012). Quantitative structure-activity/property relationships: The ubiquitous links between cause and effect. ChemPlusChem, 77(7), 507–517. https://doi.org/10.1002/cplu.201200038
  • Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 1–15. https://doi.org/10.1038/s41598-017-09654-8
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T. G., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252–W258. https://doi.org/10.1093/nar/gku340
  • Bibi, S., & Sakata, K. (2016). Current status of computer-aided drug design for type 2 diabetes. Current Computer Aided-Drug Design, 12(2), 167–177. https://doi.org/10.2174/1573409912666160426120709
  • Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 1(1), 15. https://doi.org/10.1186/1758-2946-1-15
  • Bimonte, S., Crispo, A., Amore, A., Celentano, E., Cuomo, A., & Cascella, M. (2020). Potential antiviral drugs for SARS-Cov-2 treatment: Preclinical findings and ongoing clinical research. In Vivo (Athens, Greece), 34(3 Suppl), 1597–1602. https://doi.org/10.21873/invivo.11949
  • Borbone, N., Piccialli, G., Roviello, G. N., & Oliviero, G. (2021). Nucleoside analogs and nucleoside precursors as drugs in the fight against SARS-CoV-2 and other coronaviruses. Molecules (Molecules), 26(4), 986. https://doi.org/10.3390/molecules26040986
  • Brown, A. J., Won, J. J., Graham, R. L., Dinnon, K. H., Sims, A. C., Feng, J. Y., Cihlar, T., Denison, M. R., Baric, R. S., & Sheahan, T. P. (2019). Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Research, 169, 104541. https://doi.org/10.1016/j.antiviral.2019.104541
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranovic, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., … Zardecki, C. (2019). RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. https://doi.org/10.1093/nar/gky1004
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet (London, England), 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Cho, A., Zhang, L., Xu, J., Lee, R., Butler, T., Metobo, S., Aktoudianakis, V., Lew, W., Ye, H., Clarke, M., Doerffler, E., Byun, D., Wang, T., Babusis, D., Carey, A. C., German, P., Sauer, D., Zhong, W., Rossi, S., … Kim, C. U. (2014). Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients. Journal of Medicinal Chemistry, 57(5), 1812–1825. https://doi.org/10.1021/jm400201a
  • Choong, Y. S., Tye, G. J., & Lim, T. S. (2013). Minireview: Applied structural bioinformatics in proteomics. The Protein Journal, 32(7), 505–511. https://doi.org/10.1007/s10930-013-9514-1
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42713–42717. https://doi.org/10.1038/srep42717
  • De Benedetti, P. G., & Fanelli, F. (2010). Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR. Drug Discovery Today, 15(19–20), 859–866. https://doi.org/10.1016/j.drudis.2010.08.003
  • De Jong, S. (1990). Multivariate calibration, H. Martens and T. Naes, Wiley, New York, 1989. ISBN 0 471 90979 3. Price: £75.00, US$138.00. No. of pages: 504. Journal of Chemometrics, 4(6), 441–441. https://doi.org/10.1002/cem.1180040607
  • Dickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307
  • Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L. P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/journal.pcbi.1005659
  • Fakayode, S. O., Busch, K. W., & Busch, M. A. (2009). Chemometric approach to chiral recognition using molecular spectroscopy. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470027318.a9082
  • Fakayode, S. O., Mitchell, B. S., & Pollard, D. A. (2014). Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship. Talanta, 126, 151–156. https://doi.org/10.1016/j.talanta.2014.03.037
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., & Petersson, G. A. (2009). Gaussian 09, A.02. Gaussian, Inc. 111
  • Funar-Timofei, S., Borota, A., & Crisan, L. (2017). Combined molecular docking and QSAR study of fused heterocyclic herbicide inhibitors of D1 protein in photosystem II of plants. Molecular Diversity, 21(2), 437–454. https://doi.org/10.1007/s11030-017-9735-x
  • Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., Sun, Q., Ming, Z., Zhang, L., Ge, J., Zheng, L., Zhang, Y., Wang, H., Zhu, Y., Zhu, C., Hu, T., Hua, T., Zhang, B., … Rao, Z. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science (New York, N.Y.), 368(6492), 779–782. https://doi.org/10.1126/science.abb7498
  • Geraghty, R. J., Aliota, M. T., & Bonnac, L. F. (2021). Broad-spectrum antiviral strategies and nucleoside analogues. Viruses, 13(4), 667. https://doi.org/10.3390/v13040667
  • Hashemian, S. M., Farhadi, T., & Velayati, A. A A. (2020). A review on remdesivir: A possible promising agent for the treatment of COVID-19. Drug Design, Development and Therapy, 14, 3215–3222. https://doi.org/10.2147/DDDT.S261154
  • Hernandez, M., Liang Gan, G., Linvill, K., Dukatz, C., Feng, J., & Bhisetti, G. (2019). A quantum-inspired method for three-dimensional ligand-based virtual screening. Journal of Chemical Information and Modeling, 59(10), 4475–4485. https://doi.org/10.1021/acs.jcim.9b00195
  • Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., & Cramer, P. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature, 584(7819), 154–156. https://doi.org/10.1038/s41586-020-2368-8
  • Kamer, G., & Argos, P. (1984). Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research, 12(18), 7269–7282. https://doi.org/10.1093/nar/12.18.7269
  • Khadka, S., Yuchi, A., Shrestha, D. B., Budhathoki, P., Al-Subari, S. M. M., Ziad Alhouzani, T. M., & Anwar Butt, I. (2020). Repurposing drugs for COVID-19: An approach for treatment in the pandemic. Alternative Therapies in Health and Medicine, 26(S2), 100–107.
  • Khan, S., Attar, F., Bloukh, S. H., Sharifi, M., Nabi, F., Bai, Q., Khan, R. H., & Falahati, M. (2021). A review on the interaction of nucleoside analogues with SARS-CoV-2 RNA dependent RNA polymerase. International Journal of Biological Macromolecules, 181, 605–611. https://doi.org/10.1016/j.ijbiomac.2021.03.112
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications, 10(1), 1–9. https://doi.org/10.1038/s41467-019-10280-3
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Krieger, E., Darden, T., Nabuurs, S. B., Finkelstein, A., & Vriend, G. (2004). Making optimal use of empirical energy functions: Force-field parameterization in crystal space. Proteins, 57(4), 678–683. https://doi.org/10.1002/prot.20251
  • Krivov, G. G., Shapovalov, M. V., & Dunbrack, R. L. (2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins, 77(4), 778–795. https://doi.org/10.1002/prot.22488
  • Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., Roel-Touris, J., Melquiond, A. S. J., Geng, C., Schaarschmidt, J., Xue, L. C., Vangone, A., & Bonvin, A. M. J. J. (2018). Performance of HADDOCK and a simple contact-based protein-ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 32(1), 175–185. https://doi.org/10.1007/s10822-017-0049-y
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. https://doi.org/10.1002/jcc.20065
  • Martinez, M. A. (2020). Clinical trials of repurposed antivirals for SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64(9), 1–19. https://doi.org/10.1128/AAC.01101-20
  • Mazanetz, M. P. (2013). Quantum mechanical applications in drug discovery. In L. Dormer (Ed.), In silico drug discovery and design (pp. 64–79). Future Medicine. https://doi.org/10.4155/EBO.13.291
  • Mercorelli, B., Palù, G., & Loregian, A. (2018). Drug repurposing for viral infectious diseases: How far are we?. Trends in microbiology, 26(10), 865–876. https://doi.org/10.1016/j.tim.2018.04.004
  • Onawole, A. T., Sulaiman, K. O., Kolapo, T. U., Akinde, F. O., & Adegoke, R. O. (2020). COVID-19: CADD to the rescue. Virus Research, 285, 198022. https://doi.org/10.1016/j.virusres.2020.198022
  • Pack, S. (1991). Factor analysis in chemistry, (2nd edition), E. R. Malinowski, Wiley-Interscience, 1991. ISBN 0-471-53009-3. Price £43.70. Journal of Chemometrics, 5(6), 545. https://doi.org/10.1002/cem.1180050607
  • Parvathaneni, V., & Gupta, V. (2020). Utilizing drug repurposing against COVID-19 - Efficacy, limitations, and challenges. Life Science, 259, 118275. https://doi.org/10.1016/j.lfs.2020.118275
  • Peng, R. D. (2015). R programming for data science, 109–116.
  • Pruijssers, A. J., George, A. S., Schäfer, A., Leist, S. R., Gralinksi, L. E., Dinnon, K. H., Yount, B. L., Agostini, M. L., Stevens, L. J., Chappell, J. D., Lu, X., Hughes, T. M., Gully, K., Martinez, D. R., Brown, A. J., Graham, R. L., Perry, J. K., Du Pont, V., Pitts, J., … Sheahan, T. P. (2020). Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Reports, 32(3), 107940. https://doi.org/10.1016/j.celrep.2020.107940
  • Rstudio Team. (2019). RStudio: Integrated development for R. RStudio, Inc. https://doi.org/10.1007/978-3-642-20966-6
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shanmugam, A., Muralidharan, N., Velmurugan, D., & Gromiha, M. M. (2020). Therapeutic targets and computational approaches on drug development for COVID-19. Current Topics in Medicinal Chemistry, 20(24), 2210–2220. https://doi.org/10.2174/1568026620666200710105507
  • Shannon, A., Le, N. T. T., Selisko, B., Eydoux, C., Alvarez, K., Guillemot, J. C., Decroly, E., Peersen, O., Ferron, F., & Canard, B. (2020). Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Research, 178, 104793. https://doi.org/10.1016/j.antiviral.2020.104793
  • Sheahan, T. P., Sims, A. C., & Graham, R. L. (2017). Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Translational Medicine., 9(396), eaal3653. https://doi.org/10.1126/scitranslmed.aal3653
  • Shi, Y., Shuai, L., Wen, Z., Wang, C., Yan, Y., Jiao, Z., Guo, F., Fu, Z. F., Chen, H., Bu, Z., & Peng, G. (2021). The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Emerging Microbes & Infections, 10(1), 481–492. https://doi.org/10.1080/22221751.2021.1899770
  • Siegel, D., Hui, H. C., Doerffler, E., Clarke, M. O., Chun, K., Zhang, L., Neville, S., Carra, E., Lew, W., Ross, B., Wang, Q., Wolfe, L., Jordan, R., Soloveva, V., Knox, J., Perry, J., Perron, M., Stray, K. M., Barauskas, O., … Mackman, R. L. (2017). Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine c-nucleoside (gs-5734) for the treatment of ebola and emerging viruses. Journal of Medicinal Chemistry, 60(5), 1648–1661. https://doi.org/10.1021/acs.jmedchem.6b01594
  • Skariyachan, S., Gopal, D., Chakrabarti, S., & Kempanna, P. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company ’ s public news and information. January.
  • Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/journal.pcbi.1008667
  • Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B., & Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111(37), E3900–E3909. https://doi.org/10.1073/pnas.1323705111
  • Susnow, R. G., & Dixon, S. L. (2003). Use of robust classification techniques for the prediction of human cytochrome P450 2D6 inhibition. Journal of Chemical Information and Computer Sciences, 43(4), 1308–1315. https://doi.org/10.1021/ci030283p
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uzunova, K., Filipova, E., Pavlova, V., & Vekov, T. (2020). Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 131(August), 110668. https://doi.org/10.1016/j.biopha.2020.110668
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, Q., Wu, J., Wang, H., Gao, Y., Liu, Q., Mu, A., Ji, W., Yan, L., Zhu, Y., Zhu, C., Fang, X., Yang, X., Huang, Y., Gao, H., Liu, F., Ge, J., Sun, Q., Yang, X., Xu, W., … Rao, Z. (2020). Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell, 182(2), 417–428.e13. https://doi.org/10.1016/j.cell.2020.05.034
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://doi.org/10.1007/978-0-387-98141-3
  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52. https://doi.org/10.1016/0169-7439(87)80084-9
  • Woo, H., & Roux, B. (2005). Calculation of absolute protein–ligand binding free. Proceedings of the National Academy of Sciences, 102(19), 6825–6830. https://doi.org/10.1073/pnas.0409005102
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Ye, Z.-W., Yuan, S., Chan, J. F.-W., Zhang, A. J., Yu, C.-Y., Ong, C. P., Yang, D., Chan, C. C.-Y., Tang, K., Cao, J., Poon, V. K.-M., Chan, C. C.-S., Cai, J.-P., Chu, H., Yuen, K.-Y., & Jin, D.-Y. (2021). Beneficial effect of combinational methylprednisolone and remdesivir in hamster model of SARS-CoV-2 infection. Emerging Microbes & Infections, 10(1), 291–304. https://doi.org/10.1080/22221751.2021.1885998
  • Yesudhas, D., Srivastava, A., & Gromiha, M. M. (2021). COVID-19 outbreak: History, mechanism, transmission, structural studies and therapeutics. Infection, 49(2), 199–213. https://doi.org/10.1007/s15010-020-01516-2
  • Yin, W., Luan, X., Li, Z., Zhou, Z., Wang, Q., Gao, M., Wang, X., Zhou, F., Shi, J., You, E., Liu, M., Wang, Q., Jiang, Y., Jiang, H., Xiao, G., Zhang, L., Yu, X., Zhang, S., & Eric Xu, H. (2021). Structural basis for inhibition of the SARS-CoV-2 RNA polymerase by suramin. Nature Structural & Molecular Biology, 28(3), 319–325. https://doi.org/10.1038/s41594-021-00570-0
  • Yu, C. H. (2009). Book Review: Creswell, J., & Plano Clark, V. (2007). Designing and conducting mixed methods research. Thousand Oaks, CA: Sage. Organizational Research Methods, 12(4), 801–804. https://doi.org/10.1177/1094428108318066
  • Zhang, W. F., Stephen, P., Stephen, P., Thériault, J. F., Wang, R., & Lin, S. X. (2020). Novel coronavirus polymerase and nucleotidyl-transferase structures: Potential to target new outbreaks. The Journal of Physical Chemistry Letters, 11(11), 4430–4435. https://doi.org/10.1021/acs.jpclett.0c00571

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.