213
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Computational study of DMPC liposomes loaded with the N-(2-Hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) and determination of its antiproliferative activity in vitro in NIH-3T3 cells

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 11448-11459 | Received 29 Oct 2020, Accepted 10 Jul 2021, Published online: 27 Jul 2021

References

  • Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. Advanced Drug Delivery Reviews, 65(1), 36–48. https://doi.org/10.1016/j.addr.2012.09.037
  • Almeida, P. F., Vaz, W. L., & Thompson, T. E. (1992). Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: A free volume analysis. Biochemistry, 31(29), 6739–6747. https://doi.org/10.1021/bi00144a013
  • Batrakova, E. V., & Kabanov, A. V. (2008). Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. Journal of Controlled Release, 130(2), 98–106. https://doi.org/10.1016/j.jconrel.2008.04.013
  • BIOVIA. (2015). Discovery Studio. 16th ed. Dassault Systèmes.
  • Briuglia, M. L., Rotella, C., McFarlane, A., & Lamprou, D. A. (2015). Influence of cholesterol on liposome stability and on in vitro drug release. Drug Delivery and Translational Research, 5(3), 231–242. https://doi.org/10.1007/s13346-015-0220-8
  • ChemAxon. (2012). Marvin Sketch 5.10.4. 5.10.4 ed. ChemAxon.
  • Cheng, Y., & Ji, Y. (2019). RGD-modified polymer and liposome nanovehicles: Recent research progress for drug delivery in cancer therapeutics. European Journal of Pharmaceutical Sciences, 128, 8–17. https://doi.org/10.1016/j.ejps.2018.11.023
  • Chiu, M. H., & Prenner, E. J. (2011). Differential scanning calorimetry: An invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. Journal of Pharmacy & Bioallied Sciences, 3(1), 39–59. https://doi.org/10.4103/0975-7406.76463
  • Chiu, S. W., Jakobsson, E., Mashl, R. J., & Scott, H. L. (2002). Cholesterol-induced modifications in lipid bilayers: A simulation study. Biophysical Journal, 83(4), 1842–1853. https://doi.org/10.1016/s0006-3495(02)73949-0
  • Contis-Montes de Oca, A., Rodarte-Valle, E., Rosales-Hernandez, M. C., Abarca-Rojano, E., Rojas-Hernandez, S., Fragoso-Vazquez, M. J., Mendieta-Wejebe, J. E., Correa-Basurto, A. M., Vazquez-Moctezuma, I., & Correa-Basurto, J. (2018). N-(2'-Hydroxyphenyl)-2-propylpentanamide (OH-VPA), a histone deacetylase inhibitor, induces the release of nuclear HMGB1 and modifies ROS levels in HeLa cells. Oncotarget, 9(70), 33368–33381. https://doi.org/10.18632/oncotarget.26077
  • Daeihamed, M., Haeri, A., Ostad, S. N., Akhlaghi, M. F., & Dadashzadeh, S. (2017). Doxorubicin-loaded liposomes: Enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (London, England), 12(10), 1187–1202. https://doi.org/10.2217/nnm-2017-0007
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Efimova, S. S., & Ostroumova, O. S. (2020). The disordering effect of plant metabolites on model lipid membranes of various thickness. Cell and Tissue Biology, 14(5), 388–397. https://doi.org/10.1134/S1990519X2005003X
  • Falck, E., Patra, M., Karttunen, M., Hyvonen, M. T., & Vattulainen, I. (2004). Impact of cholesterol on voids in phospholipid membranes. The Journal of Chemical Physics, 121(24), 12676–12689. https://doi.org/10.1063/1.1824033
  • Haberkorn, R. A., Griffin, R. G., Meadows, M. D., & Oldfield, E. (1977). Deuterium nuclear magnetic resonance investigation of the dipalmitoyl lecithin-cholesterol-water system. Journal of the American Chemical Society, 99(22), 7353–7355. https://doi.org/10.1021/ja00464a043
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(sici)1096-987x(199709)18:12 < 1463::aid-jcc4 > 3.0.co;2-h
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Huang, J., & MacKerell, A. D., Jr. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Inamura, K., Komizu, Y., Yamakuchi, M., Ishida, S., Matsumoto, Y., & Matsushita, T. (2019). Inhibitory effect of hybrid liposomes on the growth of liver cancer stem cells. Biochemical and Biophysical Research Communications, 509(1), 268–274. https://doi.org/10.1016/j.bbrc.2018.12.118
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: a web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaddah, S., Khreich, N., Kaddah, F., Charcosset, C., & Greige-Gerges, H. (2018). Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food and Chemical Toxicology, 113, 40–48. https://doi.org/10.1016/j.fct.2018.01.017
  • Khajeh, A., & Modarress, H. (2014). The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochimica et Biophysica Acta, 1838(10), 2431–2438. https://doi.org/10.1016/j.bbamem.2014.05.029
  • Kheirolomoom, A., & Ferrara, K. W. (2007). Cholesterol transport from liposomal delivery vehicles. Biomaterials, 28(29), 4311–4320. https://doi.org/10.1016/j.biomaterials.2007.06.008
  • Khelashvili, G., Pabst, G., & Harries, D. (2010). Cholesterol orientation and tilt modulus in DMPC bilayers. The Journal of Physical Chemistry B, 114(22), 7524–7534. https://doi.org/10.1021/jp101889k
  • Kucerka, N., Kiselev, M. A., & Balgavy, P. (2004). Determination of bilayer thickness and lipid surface area in unilamellar dimyristoylphosphatidylcholine vesicles from small-angle neutron scattering curves: A comparison of evaluation methods. European Biophysics Journal, 33(4), 328–334. https://doi.org/10.1007/s00249-003-0349-0
  • Kucerka, N., Perlmutter, J. D., Pan, J., Tristram-Nagle, S., Katsaras, J., & Sachs, J. N. (2008). The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophysical Journal, 95(6), 2792–2805. https://doi.org/10.1529/biophysj.107.122465
  • Kulthe, S. S., Inamdar, N. N., Choudhari, Y. M., Shirolikar, S. M., Borde, L. C., & Mourya, V. K. (2011). Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: Implications for controlled and targeted drug delivery. Colloids and Surfaces B, Biointerfaces, 88(2), 691–696. https://doi.org/10.1016/j.colsurfb.2011.08.002
  • Lee, A. G. (2004). How lipids affect the activities of integral membrane proteins. Biochimica et Biophysica Acta, 1666(1–2), 62–87. https://doi.org/10.1016/j.bbamem.2004.05.012
  • Lipowsky, R. (2013). Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature. Faraday Discussions, 161, 305–331, discussion 419-359. https://doi.org/10.1039/C2FD20105D
  • Lipowsky, R., Rouhiparkouhi, T., Discher, D. E., & Weikl, T. R. (2013). Domain formation in cholesterol–phospholipid membranes exposed to adhesive surfaces or environments. Soft Matter, 9(35), 8438–8453. https://doi.org/10.1039/c3sm50712b
  • Liu, J., & Yang, L. (2006). Effect of cholesterol on DMPC phospholipid membranes and QSAR model construction in membrane-interaction QSAR study through molecular dynamics simulation. Bioorganic & Medicinal Chemistry, 14(7), 2225–2234. https://doi.org/10.1016/j.bmc.2005.11.009
  • Mabrey, S., Mateo, P. L., & Sturtevant, J. M. (1978). High-sensitivity scanning calorimetric study of mixtures of cholesterol with dimyristoyl- and dipalmitoylphosphatidylcholines. Biochemistry, 17(12), 2464–2468. https://doi.org/10.1021/bi00605a034
  • Marcos, X., Padilla-Beltran, C., Bernad-Bernad, M. J., Rosales-Hernandez, M. C., Perez-Casas, S., & Correa-Basurto, J. (2018). Controlled release of N-(2-hydroxyphenyl)-2-propylpentanamide nanoencapsulated in polymeric micelles of P123 and F127 tested as anti-proliferative agents in MDA-MB-231 cells. Journal of Drug Delivery Science and Technology, 48, 403–413. https://doi.org/10.1016/j.jddst.2018.10.005
  • McIntosh, T. J., & Simon, S. A. (1986). Hydration force and bilayer deformation: A reevaluation. Biochemistry, 25(14), 4058–4066. https://doi.org/10.1021/bi00362a011
  • Mitra, K., Ubarretxena-Belandia, I., Taguchi, T., Warren, G., & Engelman, D. M. (2004). Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4083–4088. https://doi.org/10.1073/pnas.0307332101
  • Mojumdar, E. H., & Lyubartsev, A. P. (2010). Molecular dynamics simulations of local anesthetic articaine in a lipid bilayer. Biophysical Chemistry, 153(1), 27–35. https://doi.org/10.1016/j.bpc.2010.10.001
  • Nosé, S. (1984). A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics, 52(2), 255–268. https://doi.org/10.1080/00268978400101201
  • Oldfield, E., Meadows, M., Rice, D., & Jacobs, R. (1978). Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry, 17(14), 2727–2740. https://doi.org/10.1021/bi00607a006
  • Paiva, J. G., Paradiso, P., Serro, A. P., Fernandes, A., & Saramago, B. (2012). Interaction of local and general anaesthetics with liposomal membrane models: A QCM-D and DSC study. Colloids and Surfaces B, Biointerfaces, 95, 65–74. https://doi.org/10.1016/j.colsurfb.2012.02.027
  • Páll, S., & Hess, B. (2013). A flexible algorithm for calculating pair interactions on SIMD architectures. Computer Physics Communications, 184(12), 2641–2650. https://doi.org/10.1016/j.cpc.2013.06.003
  • Pan, J., Mills, T. T., Tristram-Nagle, S., & Nagle, J. F. (2008). Cholesterol perturbs lipid bilayers nonuniversally. Physical Review Letters, 100(19), 198103. https://doi.org/10.1103/PhysRevLett.100.198103
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pasenkiewicz-Gierula, M., Murzyn, K., Rog, T., & Czaplewski, C. (2000a). Molecular dynamics simulation studies of lipid bilayer systems. Acta Biochimica Polonica, 47(3), 601–611. doi:10.18388/abp.2000_3982.
  • Pasenkiewicz-Gierula, M., Rog, T., Kitamura, K., & Kusumi, A. (2000b). Cholesterol effects on the phosphatidylcholine bilayer polar region: A molecular simulation study. Biophysical Journal, 78(3), 1376–1389. https://doi.org/10.1016/S0006-3495(00)76691-4
  • Pencer, J., Nieh, M. P., Harroun, T. A., Krueger, S., Adams, C., & Katsaras, J. (2005). Bilayer thickness and thermal response of dimyristoylphosphatidylcholine unilamellar vesicles containing cholesterol, ergosterol and lanosterol: A small-angle neutron scattering study. Biochimica et Biophysica Acta, 1720(1–2), 84–91. https://doi.org/10.1016/j.bbamem.2005.10.017
  • Porasso, R. D., Bennett, W. F., Oliveira-Costa, S. D., & Lopez Cascales, J. J. (2009). Study of the benzocaine transfer from aqueous solution to the interior of a biological membrane. The Journal of Physical Chemistry B, 113(29), 9988–9994. https://doi.org/10.1021/jp902931s
  • Prestegui-Martel, B., Bermudez-Lugo, J. A., Chavez-Blanco, A., Duenas-Gonzalez, A., Garcia-Sanchez, J. R., Perez-Gonzalez, O. A., Padilla, M., II, Fragoso-Vazquez, M. J., Mendieta-Wejebe, J. E., Correa-Basurto, A. M., Mendez-Luna, D., Trujillo-Ferrara, J., & Correa-Basurto, J. (2016). N-(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved anti-proliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(Sup 3), 140–149. https://doi.org/10.1080/14756366.2016.1210138
  • Rode, A., Sharma, S., & Mishra, D. K. (2018). Carbon nanotubes: Classification, method of preparation and pharmaceutical application. Current Drug Delivery, 15(5), 620–629. https://doi.org/10.2174/1567201815666171221124711
  • Rogers, J. A., & Anderson, K. E. (1998). The potential of liposomes in oral drug delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 15(5), 421–480. doi:10.1615/CritRevTherDrugCarrierSyst.v15.i5.10.
  • Romero-Arrieta, M. R., Uria-Canseco, E., & Perez-Casas, S. (2020). Simultaneous encapsulation of hydrophilic and lipophilic molecules in liposomes od DSPC. Thermochimica Acta, 687(178402), 178462. https://doi.org/10.1016/j.tca.2019.178462
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Saxton, M. J. (1982). Lateral diffusion in an archipelago. Effects of impermeable patches on diffusion in a cell membrane. Biophysical Journal, 39(2), 165–173. https://doi.org/10.1016/S0006-3495(82)84504-9
  • Schmid, P., Adams, S., Rugo, H. S., Schneeweiss, A., Barrios, C. H., Iwata, H., Dieras, V., Hegg, R., Im, S. A., Shaw Wright, G., Henschel, V., Molinero, L., Chui, S. Y., Funke, R., Husain, A., Winer, E. P., Loi, S., Emens, L. A., & Investigators, I. M. T. (2018). Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New England Journal of Medicine, 379(22), 2108–2121. https://doi.org/10.1056/NEJMoa1809615
  • Schonsee, C. D., & Bucheli, T. D. (2020). Experimental determination of octanol–water partition coefficients of selected natural toxins. Journal of Chemical & Engineering Data, 65(4), 1946–1953. https://doi.org/10.1021/acs.jced.9b01129
  • Schrödinger. (2021). The PyMOL Molecular Graphics System. 2nd ed.
  • Schwengber, A., Prado, H. J., Zilli, D. A., Bonelli, P. R., & Cukierman, A. L. (2015). Carbon nanotubes buckypapers for potential transdermal drug delivery. Materials Science & Engineering C, 57, 7–13. https://doi.org/10.1016/j.msec.2015.07.030
  • Serro, A. P., Galante, R., Kozica, A., Paradiso, P., da Silva, A., Luzyanin, K. V., Fernandes, A. C., & Saramago, B. (2014). Effect of tetracaine on DMPC and DMPC plus cholesterol biomembrane models: Liposomes and monolayers. Colloids and Surfaces B: Biointerfaces, 116, 63–71. https://doi.org/10.1016/j.colsurfb.2013.12.042
  • Sharma, S., Mehra, N. K., Jain, K., & Jain, N. K. (2016). Effect of functionalization on drug delivery potential of carbon nanotubes. Artificial Cells, Nanomedicine, and Biotechnology, 44(8), 1851–1860. https://doi.org/10.3109/21691401.2015.1111227
  • Siddiquee, A. M., Houri, A., Messalea, K. A., Lin, J., Daeneke, T., Abbey, B., Mechler, A., & Kou, S. (2020). Nanoscale probing of cholesterol-rich domains in single bilayer dimyristoyl-phosphocholine membranes using near-field spectroscopic imaging. The Journal of Physical Chemistry Letters, 11(21), 9476–9484. https://doi.org/10.1021/acs.jpclett.0c02192
  • Sk, U. H., & Kojima, C. (2015). Dendrimers for theranostic applications. Biomolecular Concepts, 6(3), 205–217. https://doi.org/10.1515/bmc-2015-0012
  • Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V. A., Radchenko, E. V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y., & Prokopenko, V. V. (2005). Virtual computational chemistry laboratory-design and description. Journal of Computer-Aided Molecular Design, 19(6), 453–463. https://doi.org/10.1007/s10822-005-8694-y
  • Uria-Canseco, E., & Perez-Casas, S. (2020). Spherical and tubular dimyristoylphosphatidylcholine liposomes. Journal of Thermal Analysis and Calorimetry, 139(1), 399–409. https://doi.org/10.1007/s10973-019-08416-0
  • White, K., Rades, T., Kearns, P., Toth, I., & Hook, S. (2006). Immunogenicity of liposomes containing lipid core peptides and the adjuvant Quil A. Pharmaceutical Research, 23(7), 1473–1481. https://doi.org/10.1007/s11095-006-0272-z
  • Wohlert, J., & Edholm, O. (2006). Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion. Journal of Chemical Physics, 125(20), 204703. https://doi.org/10.1063/1.2393240
  • Wu, E. L., Cheng, X., Jo, S., Rui, H., Song, K. C., Davila-Contreras, E. M., Qi, Y., Lee, J., Monje-Galvan, V., Venable, R. M., Klauda, J. B., & Im, W. (2014). CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. Journal of Computational Chemistry, 35(27), 1997–2004. https://doi.org/10.1002/jcc.23702
  • Yi, X., Batrakova, E., Banks, W. A., Vinogradov, S., & Kabanov, A. V. (2008). Protein conjugation with amphiphilic block copolymers for enhanced cellular delivery. Bioconjugate Chemistry, 19(5), 1071–1077. https://doi.org/10.1021/bc700443k
  • Yousefpour, A., Amjad Iranagh, S., Nademi, Y., & Modarress, H. (2013). Molecular dynamics simulation of nonsteroidal antiinflammatory drugs, naproxen and relafen, in a lipid bilayer membrane. International Journal of Quantum Chemistry, 113(15), 1919–1930. https://doi.org/10.1002/qua.24415
  • Zhu, Y., & Liao, L. (2015). Applications of nanoparticles for anticancer drug delivery: A review. Journal of Nanoscience and Nanotechnology, 15(7), 4753–4773. https://doi.org/10.1166/jnn.2015.10298
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816
  • Zununi Vahed, S., Salehi, R., Davaran, S., & Sharifi, S. (2017). Liposome-based drug co-delivery systems in cancer cells. Materials Science & Engineering C, 71, 1327–1341. https://doi.org/10.1016/j.msec.2016.11.073

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.